Powered by RND
PodcastsCienciasChoses à Savoir SCIENCES

Choses à Savoir SCIENCES

Choses à Savoir
Choses à Savoir SCIENCES
Último episodio

Episodios disponibles

5 de 2419
  • Pourquoi de mystérieuses structures au large de Cuba intriguent-elles ?
    En 2001, une équipe d’océanographes canadiens menée par Paulina Zelitsky et Paul Weinzweig, travaillant pour la société Advanced Digital Communications, réalise une découverte qui va bouleverser le monde scientifique : au large de la pointe occidentale de Cuba, leurs sonars détectent à 650 mètres de profondeur une série de structures géométriques parfaitement alignées. Des formes rectangulaires, des pyramides, des avenues entières semblent dessiner les contours d’une ville engloutie.À l’époque, les chercheurs effectuent plusieurs plongées robotisées. Les images sont saisissantes : blocs taillés, angles droits, surfaces planes évoquant des murs ou des routes. Tout semble indiquer une construction humaine, mais datée de plusieurs millénaires. Si l’hypothèse se confirmait, elle remettrait en cause notre chronologie de la civilisation, car aucune société connue n’aurait pu ériger une telle cité avant qu’elle soit engloutie par la mer.Les scientifiques baptisent le site “Mega”, du nom d’un programme de cartographie sous-marine cubano-canadien. Certains y voient la trace d’une cité perdue semblable au mythe de l’Atlantide décrit par Platon. D’autres évoquent un cataclysme datant de la fin de la dernière ère glaciaire, il y a environ 12 000 ans, lorsque la montée brutale des océans aurait englouti des régions côtières entières. Mais le mystère reste total : à cette profondeur, aucune civilisation connue n’aurait pu construire ni même habiter un tel lieu.Les sceptiques avancent une explication plus rationnelle : il pourrait s’agir d’un phénomène géologique naturel, des formations rocheuses fracturées par les mouvements tectoniques. Pourtant, la régularité des motifs continue d’interpeller. Les images sonar montrent des structures de 400 mètres de large, formant des ensembles quadrillés trop ordonnés pour être purement aléatoires.Depuis deux décennies, les débats s’enchaînent sans qu’aucune expédition de grande ampleur n’ait été menée pour trancher. Les fonds cubains, encore peu explorés, gardent leurs secrets. Paulina Zelitsky elle-même affirmait en 2002 : « Ce que nous avons vu ne ressemble à rien de connu. »Aujourd’hui, ces vestiges muets dorment toujours sous les eaux turquoise des Caraïbes. Ville antique, illusion géologique ou trace d’un monde oublié, personne ne le sait. Mais une chose est sûre : le fond des mers n’a pas encore livré tous ses secrets. Et peut-être, un jour, ces mystérieuses ruines de Cuba réécriront une page entière de l’histoire humaine. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
    --------  
    2:23
  • Pourquoi parle-t-on d'une éruption volcanique “plinienne” ?
    Une éruption plinienne, c’est l’une des formes les plus violentes et spectaculaires qu’un volcan puisse produire. Son nom évoque à lui seul la catastrophe : il vient de Pline le Jeune, un écrivain et sénateur romain du Ier siècle, témoin direct de la destruction de Pompéi lors de l’éruption du Vésuve en 79 après J.-C.. C’est de son récit que les volcanologues ont tiré ce terme, en hommage à la précision et à la force de sa description.Tout commence au petit matin du 24 août 79. Le Vésuve, jusque-là endormi depuis des siècles, explose soudainement. Pline le Jeune, alors âgé de 17 ans, observe la scène depuis la baie de Naples, à plusieurs kilomètres du volcan. Dans une lettre qu’il écrira des années plus tard à l’historien Tacite, il raconte avoir vu s’élever dans le ciel une immense colonne de cendres « comme un pin parasol » : une tige verticale qui monte droit, puis s’élargit en une nuée sombre. Ce détail deviendra le symbole même du phénomène : la colonne plinienne.Ce type d’éruption se caractérise par une explosion extrêmement puissante, provoquée par la pression des gaz emprisonnés dans le magma. Quand cette pression devient insupportable, elle libère d’un coup une énergie colossale : les gaz s’échappent, entraînant cendres, roches et fragments de lave pulvérisée jusqu’à plusieurs dizaines de kilomètres d’altitude — parfois jusqu’à la stratosphère. La colonne de matériaux peut atteindre 30 à 40 km de haut, avant de s’effondrer partiellement, formant des nuées ardentes qui dévalent les pentes à plus de 300 km/h, brûlant tout sur leur passage.Lors du drame du Vésuve, ces nuées ont enseveli Pompéi, Herculanum et Stabies sous plusieurs mètres de cendres. Les habitants, surpris par la rapidité de l’éruption, ont été piégés par la chaleur et les gaz. Pline l’Ancien, oncle de Pline le Jeune et célèbre naturaliste, tenta de secourir les victimes par bateau — il mourut asphyxié sur la plage de Stabies.Depuis, les volcanologues parlent d’éruption plinienne pour désigner les explosions les plus intenses, comparables à celle du Vésuve. D’autres volcans ont connu le même sort : le Krakatoa en 1883, le Mont Saint Helens en 1980 ou le Pinatubo en 1991, dont l’éruption a projeté plus de 10 milliards de tonnes de cendres dans l’atmosphère.En somme, une éruption plinienne, c’est le volcan porté à son paroxysme : une force brute de la nature, capable d’effacer des villes entières — et dont le nom, depuis deux millénaires, porte la mémoire d’un témoin romain fasciné par la fin d’un monde. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
    --------  
    2:42
  • Pourquoi y a-t-il plus de vent sur les côtes ?
    Si vous vivez près de la mer, vous l’avez sans doute remarqué : il y a presque toujours plus de vent sur les côtes qu’à l’intérieur des terres. Ce phénomène, à la fois familier et fascinant, s’explique par la physique de l’air et les différences de température entre la terre et l’océan.Tout part d’un fait simple : la terre et la mer ne se réchauffent pas de la même manière. Le sol se réchauffe et se refroidit beaucoup plus vite que l’eau. En journée, sous le soleil, la surface terrestre devient rapidement chaude, tandis que la mer reste relativement fraîche. Cet écart de température crée une différence de densité entre les masses d’air : l’air au-dessus du sol se réchauffe, devient plus léger et s’élève. Pour combler le vide ainsi créé, l’air plus frais venu de la mer se déplace vers la terre. C’est ce que l’on appelle la brise de mer.Cette circulation d’air se met en place presque chaque jour sur les littoraux, notamment en été. Elle peut être douce ou puissante selon la différence de température entre la terre et la mer. Plus le contraste est fort, plus le vent est soutenu. C’est pourquoi les côtes méditerranéennes, par exemple, connaissent souvent un vent régulier l’après-midi, tandis que les nuits y sont plus calmes.Mais à la tombée du jour, le phénomène s’inverse : la terre se refroidit rapidement alors que la mer conserve sa chaleur. L’air marin, plus chaud, monte à son tour, et l’air froid des terres glisse vers la mer. On parle alors de brise de terre. Ce cycle quotidien, discret mais constant, explique pourquoi les régions côtières semblent toujours animées d’un souffle d’air.À cette alternance locale s’ajoute une autre explication : la rugosité du sol. L’océan offre une surface lisse, presque plane, tandis que les terres intérieures sont couvertes d’obstacles — collines, forêts, immeubles — qui freinent le vent. Sur la mer, rien ne le retient : il peut accélérer librement. C’est pourquoi les vents marins sont souvent plus forts et plus réguliers.Enfin, les grands systèmes météorologiques jouent un rôle. Les zones côtières se trouvent souvent à la frontière entre masses d’air marines et continentales, ce qui accentue les mouvements atmosphériques.En somme, le vent des côtes n’est pas un hasard, mais le résultat d’un ballet permanent entre le soleil, la terre et la mer. Un souffle né de la différence, entretenu par le mouvement — et sans lequel les bords de mer perdraient une partie de leur charme. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
    --------  
    2:15
  • Je vous présente mon nouveau label de podcasts
    Voici les 3 premiers podcasts du label Audio Sapiens:1/ SurvivreApple Podcasts:https://podcasts.apple.com/us/podcast/survivre-histoires-vraies/id1849332822Spotify:https://open.spotify.com/show/6m4YqFSEFm6ZWSkqTiOWQR2/ A la lueur de l'HistoireApple Podcasts:https://podcasts.apple.com/us/podcast/a-la-lueur-de-lhistoire/id1849342597Spotify:https://open.spotify.com/show/7HtLCQUQ0EFFS7Hent5mWd3/ Entrez dans la légendeApple Podcasts:https://open.spotify.com/show/0NCBjxciPo4LCRiHipFpoqSpotify:https://open.spotify.com/show/0NCBjxciPo4LCRiHipFpoqEt enfin, le site web du label ;)https://www.audio-sapiens.com Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
    --------  
    2:56
  • Pourquoi certains pins penchent toujours vers l'équateur ?
    C’est un phénomène discret mais fascinant : sur certaines îles du Pacifique, notamment en Nouvelle-Calédonie, les pins colonnaires (Araucaria columnaris) semblent tous pencher… dans la même direction. C’est un phénomène discret mais fascinant : sur certaines îles du Pacifique, notamment en Nouvelle-Calédonie, les pins colonnaires (Araucaria columnaris) semblent tous pencher… dans la même direction. Et cette direction n’est pas aléatoire : ils s’inclinent vers l’équateur, qu’ils soient situés dans l’hémisphère Nord ou Sud. Un mystère botanique qui intrigue les scientifiques depuis plusieurs décennies.Ces arbres élancés, qui peuvent atteindre 60 mètres de haut, poussent naturellement droits dans la plupart des conditions. Pourtant, des mesures précises effectuées par une équipe de chercheurs australiens en 2017 (publiées dans Ecology) ont révélé un schéma troublant : plus les pins colonnaires sont éloignés de l’équateur, plus leur inclinaison vers celui-ci est marquée, jusqu’à 8 à 10 degrés. En d’autres termes, un pin situé dans l’hémisphère sud penchera vers le nord, et inversement.Pourquoi ? Plusieurs hypothèses ont été explorées. La première évoque le champ magnétique terrestre, qui pourrait influencer la croissance de ces arbres, un peu comme il guide certains animaux migrateurs. Mais aucune preuve solide ne vient confirmer ce lien. D’autres chercheurs ont pensé à une réponse phototropique, c’est-à-dire à une croissance orientée vers la lumière. Comme la trajectoire apparente du Soleil diffère selon la latitude, les arbres pourraient orienter lentement leur tronc vers la zone où l’exposition solaire est la plus régulière : celle de l’équateur. Cette hypothèse semble la plus plausible, mais elle ne suffit pas à tout expliquer, car d’autres espèces voisines ne présentent pas le même comportement.Une troisième piste concerne la rotation terrestre. Selon certains modèles, la force de Coriolis pourrait influencer la distribution des hormones de croissance (les auxines) dans les tissus végétaux, entraînant une croissance asymétrique du tronc. Ce serait une sorte d’effet “invisible” de la dynamique terrestre sur la biologie des plantes.Les chercheurs de l’université James Cook, en Australie, ont confirmé que cette inclinaison est constante et reproductible, mais son origine exacte reste mystérieuse. Aucun facteur climatique local (vents dominants, sol, humidité) ne permet de l’expliquer complètement.Ainsi, ces pins colonnaires qui s’inclinent avec élégance rappellent que la nature cache encore des énigmes : même dans un monde où les satellites scrutent chaque forêt, un simple arbre peut défier notre compréhension. Et, quelque part dans le Pacifique, des forêts entières continuent de saluer silencieusement le Soleil — toujours en direction de l’équateur. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
    --------  
    2:15

Más podcasts de Ciencias

Acerca de Choses à Savoir SCIENCES

Développez facilement votre culture scientifique grâce à un podcast quotidien ! Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
Sitio web del podcast

Escucha Choses à Savoir SCIENCES, Universo curioso de la NASA y muchos más podcasts de todo el mundo con la aplicación de radio.net

Descarga la app gratuita: radio.net

  • Añadir radios y podcasts a favoritos
  • Transmisión por Wi-Fi y Bluetooth
  • Carplay & Android Auto compatible
  • Muchas otras funciones de la app

Choses à Savoir SCIENCES: Podcasts del grupo

  • Podcast Real Life French
    Real Life French
    Educación, Aprendizaje de idiomas
Aplicaciones
Redes sociales
v7.23.11 | © 2007-2025 radio.de GmbH
Generated: 11/4/2025 - 2:29:26 PM