Powered by RND
PodcastsEducaciónCollège de France - Sélection

Collège de France - Sélection

Collège de France
Collège de France - Sélection
Último episodio

Episodios disponibles

5 de 436
  • Grand événement - La Comédie-Française au Collège de France - Éric Ruf & Pierre-Michel Menger : Acteurs et actrices, rôles et emplois
    Grand événement - La Comédie-Française au Collège de FranceÉric Ruf & Pierre-Michel Menger : Acteurs et actrices, rôles et emploisAnnée 2024-2025Pierre-Michel MengerProfesseur du Collège de FranceÉric RufComédie-FrançaiseRésuméTraditionnellement, les comédiennes et comédiens étaient engagés pour jouer des emplois qui les condamnaient toute leur carrière à interpréter le même registre de personnages. C'est dans les années 1980, avec notamment Antoine Vitez, que cet usage a commencé à s'effriter pour laisser place aux rôles et ainsi à une plus grande palette de possibilités. Pour autant, les biais de représentation perdurent et le débat porte également sur la question de la diversité, au plateau comme à l'écran.
    --------  
    1:26:11
  • Grand événement - AI and math for meteorology and climatology - Laure Zanna: Reshaping climate modelling with AI
    Grand événement - À la recherche d'un Avenir Commun DurableL'IA et les mathématiques pour la météorologie et la climatologieAI and math for meteorology and climatologyCollège de FranceAnnée 2024-20255 mai 2025Grand événement - AI and math for meteorology and climatology - Laure Zanna: Reshaping climate modelling with AILaure ZannaKeller Professor of Applied Mathematics, NYU CourantRésuméWhile AI has been disrupting conventional weather forecasting, we are only beginning to witness the impact of AI on long-term climate simulations. The fidelity and reliability of climate models has been limited by computing capabilities. These limitations lead to inaccurate representations of key processes such as convection, cloud, or mixing or restrict the ensemble size of climate predictions. Therefore, these issues are a significant hurdle in enhancing climate simulations and their predictions.Here, I will discuss a new generation of climate models with AI representations of unresolved ocean physics, learned from high-fidelity simulations, and their impact on reducing biases in climate simulations. The simulations are performed with operational ocean model components. I will further demonstrate the potential of AI to accelerate climate predictions and increase their reliability through the generation of fully AI-driven emulators, which can reproduce decades of climate model output in seconds with high accuracy.Laure ZannaProfessor Zanna is a climate physicist in the Department of Mathematics at the Courant Institute, and the Center for Data Science, NYU. She holds the Joseph B. Keller and Herbert B. Keller Professorship in Applied Mathematics. Her research focuses on understanding, simulating and predicting the role of the ocean in climate on local and global scales. She combines theory, numerical simulations, statistics, and machine learning to tackle a wide range of problems in fluid dynamics and climate, including turbulence, multiscale modeling, ocean heat and carbon uptake, and sea level rise. Since 2020, she is leading M²LInES, an international collaboration sponsored by Schmidt Sciences dedicated to improving climate models using scientific machine learning. In 2020, Prof Zanna received the Nicholas P. Fofonoff Award from the American Meteorological Society "for exceptional creativity in the development and application of new concepts in ocean and climate dynamics", and was the 2022 WHOI Geophysical Fluid Dynamics principal lecturer.
    --------  
    48:23
  • Grand événement - AI and math for meteorology and climatology - Marc Bocquet: Artificial intelligence for geophysical data assimilation
    Grand événement - À la recherche d'un Avenir Commun DurableL'IA et les mathématiques pour la météorologie et la climatologieAI and math for meteorology and climatologyCollège de FranceAnnée 2024-20255 mai 2025Grand événement - AI and math for meteorology and climatology - Marc Bocquet: Artificial intelligence for geophysical data assimilationMarc BocquetCEREA, ENPC, EdF R&D, Institut Polytechnique de ParisRésuméData assimilation is the set of key mathematical methods used to optimally combine observations and numerical model outputs. Data assimilation (DA) is critical to adjust the initial condition of meteorological forecasts, to estimate model parameters, and produce accurate re-analysis datasets. It has been at the heart of all operational weather forecasts for the past 50 years. Very recently, artificial intelligence (AI) and in particular deep learning, has begun being used as a tool to improve classical DA, to be combined with DA algorithmic schemes, or even to offer a substitute for DA.I will give an overview of the recent achievements and promising routes offered by AI into DA.For instance, ML can be leveraged in the regularisation of ensemble-based DA, in the solvers of variational DA methods, for generating or augmenting ensembles in DA, for building surrogates of the tangent linear and adjoint meteorological models to be used within DA, to learn a model error correction within a weak-constraint 4D-Var framework, or, ultimately, as a replacement for the DA analysis. I will also present an example where AI unveils new DA methods that were overlooked so far by the research community.Marc BocquetMarc Bocquet holds a Ph.D. from École Polytechnique and has an Habilitation delivered by Sorbonne University. He was a postdoctoral fellow at the University of Warwick and then at the University of Oxford. He is currently deputy director of CEREA, a laboratory of École nationale des ponts et chaussées and EDF R&D, and a professor at École nationale des ponts et chaussées, Institut Polytechnique de Paris. He works on data assimilation, inverse problems and statistical learning applied to the geosciences. He develops mathematical methods to better estimate the state of the atmosphere, of the ocean and the climate, as well as their constituents, using massive observations and complex models. He has published 115 papers and two books. He is associate editor of several peer-reviewed journals in the geosciences, and a Distinguished Research Fellow of the world's most renowned weather forecasting centre, the European Centre for Medium-Range Weather Forecasts (ECMWF).
    --------  
    47:49
  • Grand événement - AI and math for meteorology and climatology - Remi Lam: Learning global weather forecasting from data
    Grand événement - À la recherche d'un Avenir Commun DurableL'IA et les mathématiques pour la météorologie et la climatologieAI and math for meteorology and climatologyCollège de FranceAnnée 2024-20255 mai 2025Grand événement - AI and math for meteorology and climatology - Remi Lam: Learning global weather forecasting from dataRemi LamMassachusetts Institute of Technology, Staff Research Scientist, Google DeepMindRésuméThis presentation will cover some of the recent advances in weather forecasting, learning directly from data using machine learning techniques.It will discuss some of the limitations and pitfalls of training ML models for scientific applications, and will highlight new research opportunities.Rémi LamRémi Lam is a Staff Research Scientist at Google DeepMind working on making weather forecasting faster and more accurate.His research leverages machine learning techniques such as adversarial neural networks, graph neural networks and diffusion models to design tools for precipitation nowcasting (DGMR) and global medium range weather prediction (GraphCast, GenCast).
    --------  
    50:22
  • Grand événement - AI and math for meteorology and climatology - Claire Monteleoni: Confronting climate change with generative and self-supervised machine learning
    Grand événement - À la recherche d'un Avenir Commun DurableL'IA et les mathématiques pour la météorologie et la climatologieAI and math for meteorology and climatologyCollège de FranceAnnée 2024-20255 mai 2025Grand événement - AI and math for meteorology and climatology - Claire Monteleoni: Confronting climate change with generative and self-supervised machine learningClaire MonteleoniResearch Director, INRIA Paris & Professor, University of Colorado BoulderRésuméRésuméThe stunning recent advances in AI content generation rely on cutting-edge, generative deep learning algorithms and architectures trained on massive amounts of text, image, and video data. With different training data, these algorithms and architectures can also be used to confront climate change. As opposed to text and video, the relevant training data includes weather and climate data from observations, reanalyses, and even physical simulations. As in many massive data applications, creating "labeled data" for supervised machine learning is often costly, time-consuming, or even impossible. Fortuitously, in very large-scale data domains, "self-supervised" machine learning methods are now actually outperforming supervised learning methods. In this lecture, I will survey our lab's work developing generative and self-supervised machine learning approaches for applications addressing climate change, including downscaling and temporal interpolation of spatiotemporal data and generating probabilistic weather predictions.Claire MonteleoniClaire Monteleoni is a Choose France Chair in AI and a Research Director at INRIA Paris, a Professor in the Department of Computer Science at the University of Colorado Boulder (on leave), and the founding Editor in Chief of Environmental Data Science, a Cambridge University Press journal launched in December 2020. Her research on machine learning for the study of climate change helped launch the interdisciplinary field of Climate Informatics. She co-founded the International Conference on Climate Informatics, which will hold its 14th annual event in 2025. She gave an invited tutorial: Climate Change: Challenges for Machine Learning, at NeurIPS 2014. She currently serves on the U.S. National Science Foundation's Advisory Committee for Environmental Research and Education, and as Tutorials co-Chair for the International Conference on Machine Learning (ICML) 2024 and 2025.
    --------  
    57:16

Más podcasts de Educación

Acerca de Collège de France - Sélection

Une sélection des enseignements et conférences du Collège de France. Retrouvez l’ensemble des podcasts du Collège de France par professeur sur notre site internet.
Sitio web del podcast

Escucha Collège de France - Sélection, Inglés desde cero y muchos más podcasts de todo el mundo con la aplicación de radio.net

Descarga la app gratuita: radio.net

  • Añadir radios y podcasts a favoritos
  • Transmisión por Wi-Fi y Bluetooth
  • Carplay & Android Auto compatible
  • Muchas otras funciones de la app

Collège de France - Sélection: Podcasts del grupo

Aplicaciones
Redes sociales
v7.18.2 | © 2007-2025 radio.de GmbH
Generated: 5/13/2025 - 2:34:45 PM