Powered by RND
PodcastsCienciasHemispherics
Escucha Hemispherics en la aplicación
Escucha Hemispherics en la aplicación
(898)(249 730)
Favoritos
Despertador
Sleep timer

Hemispherics

Podcast Hemispherics
Hemispherics
Hemispherics, el podcast de Fisioterapia y Neurorrehabilitación, presentado por Javier Sánchez Aguilar. En este podcast podrán encontrar: • Reseñas de libros...

Episodios disponibles

5 de 79
  • #77: Actualización en stiff-knee o rodilla rígida post-ictus
    En este episodio, actualizamos la evidencia científica sobre la rodilla rígida post-ictus o stiff-knee, ampliando lo que ya sintetizamos hace varios años en el episodio #48. Indagamos en las sinergias musculares en el stiff-knee y en sus fenotipos, para poder realizar una valoración y tratamiento más específico e individualizado. Referencias del episodio: 1. Brough, L. G., Kautz, S. A., & Neptune, R. R. (2022). Muscle contributions to pre-swing biomechanical tasks influence swing leg mechanics in individuals post-stroke during walking. Journal of neuroengineering and rehabilitation, 19(1), 55. https://doi.org/10.1186/s12984-022-01029-z (https://pubmed.ncbi.nlm.nih.gov/35659252/). 2. Chantraine, F., Schreiber, C., Pereira, J. A. C., Kaps, J., & Dierick, F. (2022). Classification of Stiff-Knee Gait Kinematic Severity after Stroke Using Retrospective k-Means Clustering Algorithm. Journal of clinical medicine, 11(21), 6270. https://doi.org/10.3390/jcm11216270 (https://pubmed.ncbi.nlm.nih.gov/36362499/) 3. Fujita, K., Tsushima, Y., Hayashi, K., Kawabata, K., Sato, M., & Kobayashi, Y. (2022). Differences in causes of stiff knee gait in knee extensor activity or ankle kinematics: A cross-sectional study. Gait & posture, 98, 187–194. https://doi.org/10.1016/j.gaitpost.2022.09.078 (https://pubmed.ncbi.nlm.nih.gov/36166956/). 4. Fujita, K., Tsushima, Y., Hayashi, K., Kawabata, K., Ogawa, T., Hori, H., & Kobayashi, Y. (2024). Altered muscle synergy structure in patients with poststroke stiff knee gait. Scientific reports, 14(1), 20295. https://doi.org/10.1038/s41598-024-71083-1 (https://pubmed.ncbi.nlm.nih.gov/39217201/). 5. Krajewski, K. T., Correa, J. S., Siu, R., Cunningham, D., & Sulzer, J. S. (2025). Mechanisms of Post-Stroke Stiff Knee Gait: A Narrative Review. American journal of physical medicine & rehabilitation, 10.1097/PHM.0000000000002678. Advance online publication. https://doi.org/10.1097/PHM.0000000000002678 (https://pubmed.ncbi.nlm.nih.gov/39815400/). 6. Lee, J., Lee, R. K., Seamon, B. A., Kautz, S. A., Neptune, R. R., & Sulzer, J. (2024). Between-limb difference in peak knee flexion angle can identify persons post-stroke with Stiff-Knee gait. Clinical biomechanics (Bristol, Avon), 120, 106351. https://doi.org/10.1016/j.clinbiomech.2024.106351 (https://pubmed.ncbi.nlm.nih.gov/39321614/). 7. Tenniglo, M. J. B., Nene, A. V., Rietman, J. S., Buurke, J. H., & Prinsen, E. C. (2023). The Effect of Botulinum Toxin Type A Injection in the Rectus Femoris in Stroke Patients Walking With a Stiff Knee Gait: A Randomized Controlled Trial. Neurorehabilitation and neural repair, 37(9), 640–651. https://doi.org/10.1177/15459683231189712 (https://pubmed.ncbi.nlm.nih.gov/37644725/).
    --------  
    32:33
  • #76: Aprendiendo Neurología con el MIR
    En este episodio traigo un formato nuevo que creo que puede ser muy útil para aprender y repasar neurología de una forma más aplicada. He cogido preguntas del examen MIR del año 2025 relacionadas con neurología y, además de responderlas, las utilizo como excusa para profundizar en cada tema.
    --------  
    1:04:14
  • #75: Desentrañando el sistema de neuronas espejo
    En este episodio, exploramos a fondo el fascinante pero controvertido sistema de las neuronas espejo. Desentrañamos su descubrimiento, su neurofisiología, y el papel que desempeñan en procesos como la comprensión de acciones, la imitación, la empatía y el lenguaje. Además, abordamos las críticas más relevantes de autores como Hickok y Heyes, reflexionamos sobre su relevancia en la neurorrehabilitación y analizamos su conexión con otras redes cerebrales como el cerebelo. Un episodio esencial para entender el estado actual de la ciencia detrás de estas células y su impacto en la cognición y la clínica. Referencias del episodio: 1. Antonioni, A., Raho, E. M., Straudi, S., Granieri, E., Koch, G., & Fadiga, L. (2024). The cerebellum and the Mirror Neuron System: A matter of inhibition? From neurophysiological evidence to neuromodulatory implications. A narrative review. Neuroscience and biobehavioral reviews, 164, 105830. https://doi.org/10.1016/j.neubiorev.2024.105830 (https://pubmed.ncbi.nlm.nih.gov/39069236/9. 2. Bonini, L., Rotunno, C., Arcuri, E., & Gallese, V. (2022). Mirror neurons 30 years later: implications and applications. Trends in cognitive sciences, 26(9), 767–781. https://doi.org/10.1016/j.tics.2022.06.003 (https://pubmed.ncbi.nlm.nih.gov/35803832/). 3. Borges, L. R., Fernandes, A. B., Oliveira Dos Passos, J., Rego, I. A. O., & Campos, T. F. (2022). Action observation for upper limb rehabilitation after stroke. The Cochrane database of systematic reviews, 8(8), CD011887. https://doi.org/10.1002/14651858.CD011887.pub3 (https://pubmed.ncbi.nlm.nih.gov/35930301/). 4. Catmur, C., Walsh, V., & Heyes, C. (2007). Sensorimotor learning configures the human mirror system. Current biology : CB, 17(17), 1527–1531. https://doi.org/10.1016/j.cub.2007.08.006 (https://pubmed.ncbi.nlm.nih.gov/17716898/) 5. Dinstein I. (2008). Human cortex: reflections of mirror neurons. Current biology : CB, 18(20), R956–R959. https://doi.org/10.1016/j.cub.2008.09.007 (https://pubmed.ncbi.nlm.nih.gov/18957251/). 6. Fadiga, L., Fogassi, L., Pavesi, G., & Rizzolatti, G. (1995). Motor facilitation during action observation: a magnetic stimulation study. Journal of neurophysiology, 73(6), 2608–2611. https://doi.org/10.1152/jn.1995.73.6.2608 (https://pubmed.ncbi.nlm.nih.gov/7666169/). 7. Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain : a journal of neurology, 119 ( Pt 2), 593–609. https://doi.org/10.1093/brain/119.2.593 (https://pubmed.ncbi.nlm.nih.gov/8800951/). 8. Gallese, V., Gernsbacher, M. A., Heyes, C., Hickok, G., & Iacoboni, M. (2011). Mirror Neuron Forum. Perspectives on psychological science : a journal of the Association for Psychological Science, 6(4), 369–407. https://doi.org/10.1177/1745691611413392 (https://pubmed.ncbi.nlm.nih.gov/25520744/). 9. Glenberg, A. M. (2015). Big Myth or Major Miss? [Review of The Myth of Mirror Neurons: The Real Neuroscience of Communication and Cognition, by Gregory Hickok]. The American Journal of Psychology, 128(4), 533–539. https://doi.org/10.5406/amerjpsyc.128.4.0533 (https://www.jstor.org/stable/10.5406/amerjpsyc.128.4.0533). 10. Heyes, C., & Catmur, C. (2022). What Happened to Mirror Neurons?. Perspectives on psychological science : a journal of the Association for Psychological Science, 17(1), 153–168. https://doi.org/10.1177/1745691621990638 (https://pmc.ncbi.nlm.nih.gov/articles/PMC8785302/). 11. Hickok G. (2009). Eight problems for the mirror neuron theory of action understanding in monkeys and humans. Journal of cognitive neuroscience, 21(7), 1229–1243. https://doi.org/10.1162/jocn.2009.21189 (https://pmc.ncbi.nlm.nih.gov/articles/PMC2773693/). 12. Hickok, G. (2014). The myth of mirror neurons: The real neuroscience of communication and cognition. W. W. Norton & Company (https://wwnorton.com/books/9780393089615). 13. La Touche, R. (2020). Métodos de representación del movimiento en rehabilitación. Construyendo un marco conceptual para la aplicación en clínica. Journal of MOVE and Therapeutic Science, 2(2), 152–159. https://doi.org/10.37382/jomts.v2i2.42 (https://publicaciones.lasallecampus.es/index.php/MOVE/article/view/42). 14. Lingnau, A., Gesierich, B., & Caramazza, A. (2009). Asymmetric fMRI adaptation reveals no evidence for mirror neurons in humans. Proceedings of the National Academy of Sciences of the United States of America, 106(24), 9925–9930. https://doi.org/10.1073/pnas.0902262106 (https://pmc.ncbi.nlm.nih.gov/articles/PMC2701024/). 15. Molenberghs, P., Cunnington, R., & Mattingley, J. B. (2012). Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies. Neuroscience and biobehavioral reviews, 36(1), 341–349. https://doi.org/10.1016/j.neubiorev.2011.07.004 (https://pubmed.ncbi.nlm.nih.gov/21782846/). 16. Mukamel, R., Ekstrom, A. D., Kaplan, J., Iacoboni, M., & Fried, I. (2010). Single-neuron responses in humans during execution and observation of actions. Current biology : CB, 20(8), 750–756. https://doi.org/10.1016/j.cub.2010.02.045 (https://pubmed.ncbi.nlm.nih.gov/20381353/). 17. Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Brain research. Cognitive brain research, 3(2), 131–141. https://doi.org/10.1016/0926-6410(95)00038-0 (https://www.sciencedirect.com/science/article/pii/0926641095000380?via%3Dihub). 18. Rizzolatti, G., Fadiga, L., Matelli, M., Bettinardi, V., Paulesu, E., Perani, D., & Fazio, F. (1996). Localization of grasp representations in humans by PET: 1. Observation versus execution. Experimental brain research, 111(2), 246–252. https://doi.org/10.1007/BF00227301 (https://pubmed.ncbi.nlm.nih.gov/8891654/). 19. Rizzolatti, G., Fabbri-Destro, M., & Cattaneo, L. (2009). Mirror neurons and their clinical relevance. Nature clinical practice. Neurology, 5(1), 24–34. https://doi.org/10.1038/ncpneuro0990 (https://pubmed.ncbi.nlm.nih.gov/19129788/). 20. Rizzolatti, G., & Sinigaglia, C. (2015). A curious book on mirror neurons and their myth: Review of Gregory Hickok’s The Myth of Mirror Neurons: The Real Neuroscience of Communication and Cognition (https://bpb-us-e1.wpmucdn.com/sites.ucsc.edu/dist/0/158/files/2015/04/Rizzolatti-Sinigaglia-Review.pdf). 21. Southgate, V., & Hamilton, A. F. (2008). Unbroken mirrors: challenging a theory of Autism. Trends in cognitive sciences, 12(6), 225–229. https://doi.org/10.1016/j.tics.2008.03.005 (https://pubmed.ncbi.nlm.nih.gov/18479959/). 22. Tarhan, L. Y., Watson, C. E., & Buxbaum, L. J. (2015). Shared and Distinct Neuroanatomic Regions Critical for Tool-related Action Production and Recognition: Evidence from 131 Left-hemisphere Stroke Patients. Journal of cognitive neuroscience, 27(12), 2491–2511. https://doi.org/10.1162/jocn_a_00876 (https://pmc.ncbi.nlm.nih.gov/articles/PMC8139360/). 23. Ventoulis, I., Gkouma, K. R., Ventouli, S., & Polyzogopoulou, E. (2024). The Role of Mirror Therapy in the Rehabilitation of the Upper Limb's Motor Deficits After Stroke: Narrative Review. Journal of clinical medicine, 13(24), 7808. https://doi.org/10.3390/jcm13247808 (https://pubmed.ncbi.nlm.nih.gov/39768730/).
    --------  
    1:38:29
  • #74: Actualización en espasticidad V
    En este episodio, resumimos varios artículos científicos sobre espasticidad, en cuanto a conceptualización, neurofisiología, evaluación y tratamiento. Es una forma de actualización anual sobre esta temática tan estudiada en neurociencia. Hablamos sobre nuevos estudios de neuroimagen sobre la espasticidad, consensos sobre evaluación y desarrollos emergentes de tratamientos médicos. Referencias del episodio: 1. Cho, M. J., Yeo, S. S., Lee, S. J., & Jang, S. H. (2023). Correlation between spasticity and corticospinal/corticoreticular tract status in stroke patients after early stage. Medicine, 102(17), e33604. https://doi.org/10.1097/MD.0000000000033604 (https://pubmed.ncbi.nlm.nih.gov/37115067/). 2. Gal, O., Baude, M., Deltombe, T., Esquenazi, A., Gracies, J. M., Hoskovcova, M., Rodriguez-Blazquez, C., Rosales, R., Satkunam, L., Wissel, J., Mestre, T., Sánchez-Ferro, Á., Skorvanek, M., Tosin, M. H. S., Jech, R., & members of the MDS Clinical Outcome Assessments Scientific Evaluation Committee and MDS Spasticity Study group (2024). Clinical Outcome Assessments for Spasticity: Review, Critique, and Recommendations. Movement disorders : official journal of the Movement Disorder Society, 10.1002/mds.30062. Advance online publication. https://doi.org/10.1002/mds.30062 (https://pubmed.ncbi.nlm.nih.gov/39629752/). 3. Gracies J. M. (2005). Pathophysiology of spastic paresis. I: Paresis and soft tissue changes. Muscle & nerve, 31(5), 535–551. https://doi.org/10.1002/mus.20284 (https://pubmed.ncbi.nlm.nih.gov/15714510/). 4. Gracies J. M. (2005). Pathophysiology of spastic paresis. II: Emergence of muscle overactivity. Muscle & nerve, 31(5), 552–571. https://doi.org/10.1002/mus.20285 (https://pubmed.ncbi.nlm.nih.gov/15714511/). 5. Gracies, J. M., Alter, K. E., Biering-Sørensen, B., Dewald, J. P. A., Dressler, D., Esquenazi, A., Franco, J. H., Jech, R., Kaji, R., Jin, L., Lim, E. C. H., Raghavan, P., Rosales, R., Shalash, A. S., Simpson, D. M., Suputtitada, A., Vecchio, M., Wissel, J., & Spasticity Study Group of the International Parkinson and Movement Disorders Society (2024). Spastic Paresis: A Treatable Movement Disorder. Movement disorders : official journal of the Movement Disorder Society, 10.1002/mds.30038. Advance online publication. https://doi.org/10.1002/mds.30038 (https://pubmed.ncbi.nlm.nih.gov/39548808/). 6. Guo, X., Wallace, R., Tan, Y., Oetomo, D., Klaic, M., & Crocher, V. (2022). Technology-assisted assessment of spasticity: a systematic review. Journal of neuroengineering and rehabilitation, 19(1), 138. https://doi.org/10.1186/s12984-022-01115-2 (https://pubmed.ncbi.nlm.nih.gov/36494721/). 7. He, J., Luo, A., Yu, J., Qian, C., Liu, D., Hou, M., & Ma, Y. (2023). Quantitative assessment of spasticity: a narrative review of novel approaches and technologies. Frontiers in neurology, 14, 1121323. https://doi.org/10.3389/fneur.2023.1121323 (https://pubmed.ncbi.nlm.nih.gov/37475737/). 8. Levin, M. F., Piscitelli, D., & Khayat, J. (2024). Tonic stretch reflex threshold as a measure of disordered motor control and spasticity - A critical review. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, 165, 138–150. https://doi.org/10.1016/j.clinph.2024.06.019 (https://pubmed.ncbi.nlm.nih.gov/39029274/). 9. Li, S., Winston, P., & Mas, M. F. (2024). Spasticity Treatment Beyond Botulinum Toxins. Physical medicine and rehabilitation clinics of North America, 35(2), 399–418. https://doi.org/10.1016/j.pmr.2023.06.009 (https://pubmed.ncbi.nlm.nih.gov/38514226/). 10. Qin, Y., Qiu, S., Liu, X., Xu, S., Wang, X., Guo, X., Tang, Y., & Li, H. (2022). Lesions causing post-stroke spasticity localize to a common brain network. Frontiers in aging neuroscience, 14, 1011812. https://doi.org/10.3389/fnagi.2022.1011812 (https://pubmed.ncbi.nlm.nih.gov/36389077/). 11. Suputtitada, A., Chatromyen, S., Chen, C. P. C., & Simpson, D. M. (2024). Best Practice Guidelines for the Management of Patients with Post-Stroke Spasticity: A Modified Scoping Review. Toxins, 16(2), 98. https://doi.org/10.3390/toxins16020098 (https://pubmed.ncbi.nlm.nih.gov/38393176/). 12. Winston, P., Mills, P. B., Reebye, R., & Vincent, D. (2019). Cryoneurotomy as a Percutaneous Mini-invasive Therapy for the Treatment of the Spastic Limb: Case Presentation, Review of the Literature, and Proposed Approach for Use. Archives of rehabilitation research and clinical translation, 1(3-4), 100030. https://doi.org/10.1016/j.arrct.2019.100030 (https://pubmed.ncbi.nlm.nih.gov/33543059/).
    --------  
    1:00:01
  • #73: Entrevista a Leonardo Boccuni. Prehabilitación en tumores cerebrales y neurorrehabilitación del miembro superior
    En esta entrevista, charlo con Leonardo Boccuni, fisioterapeuta italiano que acaba de presentar (noviembre, 2024) su tesis doctoral por la Universidad Autónoma de Barcelona sobre prehabilitación de tumores cerebrales mediante neuromodulación cerebral no invasiva y terapia intensiva, dentro del Proyecto PREHABILITA, del Institut Guttmann (Barcelona, España). Leonardo nos habla sobre este proyecto, su originalidad y complejidad, debido a la confluencia de áreas como la neurocirugía, neuroimagen, neurofisiología, neurorrehabilitación y programación informática. Además, nos cuenta sus aprendizajes en la investigación y práctica clínica sobre la neurorrehabilitación del miembro superior. Referencias del episodio: 1. Boccuni, L., et al (2018). Is There Full or Proportional Somatosensory Recovery in the Upper Limb After Stroke? Investigating Behavioral Outcome and Neural Correlates. Neurorehabilitation and neural repair, 32(8), 691–700. https://doi.org/10.1177/1545968318787060 (https://pubmed.ncbi.nlm.nih.gov/29991331/). 2. Boccuni, L., et al (2019). Premotor dorsal white matter integrity for the prediction of upper limb motor impairment after stroke. Scientific reports, 9(1), 19712. https://doi.org/10.1038/s41598-019-56334-w (https://pubmed.ncbi.nlm.nih.gov/31873186/). 3. Boccuni, L.,et al (2022). Time to reconcile research findings and clinical practice on upper limb neurorehabilitation. Frontiers in neurology, 13, 939748. https://doi.org/10.3389/fneur.2022.939748 (https://pubmed.ncbi.nlm.nih.gov/35928130/). 4. Boccuni, L., et al (2023). Neuromodulation-induced prehabilitation to leverage neuroplasticity before brain tumor surgery: a single-cohort feasibility trial protocol. Frontiers in neurology, 14, 1243857. https://doi.org/10.3389/fneur.2023.1243857 (https://pubmed.ncbi.nlm.nih.gov/37849833/). 5. Boccuni, L., et al (2024). Exploring the neural basis of non-invasive prehabilitation in brain tumour patients: An fMRI-based case report of language network plasticity. Frontiers in oncology, 14, 1390542. https://doi.org/10.3389/fonc.2024.1390542 (https://pubmed.ncbi.nlm.nih.gov/38826790/). 6. Boccuni, L., et al (2024). Non-invasive prehabilitation to foster widespread fMRI cortical reorganization before brain tumor surgery: lessons from a case series. Journal of neuro-oncology, 170(1), 185–198. https://doi.org/10.1007/s11060-024-04774-4 (https://pubmed.ncbi.nlm.nih.gov/39044115/). 7. Essers, B., Meyer, S., De Bruyn, N., Van Gils, A., Boccuni, L., Tedesco Triccas, L., Peeters, A., Thijs, V., Feys, H., & Verheyden, G. (2019). Mismatch between observed and perceived upper limb function: an eye-catching phenomenon after stroke. Disability and rehabilitation, 41(13), 1545–1551. https://doi.org/10.1080/09638288.2018.1442504 (https://pubmed.ncbi.nlm.nih.gov/29564912/). 8. Salvalaggio, S., Boccuni, L., & Turolla, A. (2023). Patient's assessment and prediction of recovery after stroke: a roadmap for clinicians. Archives of physiotherapy, 13(1), 13. https://doi.org/10.1186/s40945-023-00167-4 (https://pubmed.ncbi.nlm.nih.gov/37337288/). 9. Yilmazer, C., Boccuni, L., Thijs, L., & Verheyden, G. (2019). Effectiveness of somatosensory interventions on somatosensory, motor and functional outcomes in the upper limb post-stroke: A systematic review and meta-analysis. NeuroRehabilitation, 44(4), 459–477. https://doi.org/10.3233/NRE-192687 (https://pubmed.ncbi.nlm.nih.gov/31256086/). *Tesis doctoral próximamente disponible :)
    --------  
    1:40:08

Más podcasts de Ciencias

Acerca de Hemispherics

Hemispherics, el podcast de Fisioterapia y Neurorrehabilitación, presentado por Javier Sánchez Aguilar. En este podcast podrán encontrar: • Reseñas de libros de neurociencia, neurorrehabilitación, fisioterapia. • Comentarios de revisiones y artículos científicos relacionados con la fisioterapia y la neurorrehabilitación. • Visibilización de investigadores/as. • Exposición de temas específicos detallados sobre fisioterapia y neurorrehabilitación. • Entrevistas a fisioterapeutas y especialistas en neurorrehabilitación.
Sitio web del podcast

Escucha Hemispherics, Jefillysh: Ciencia Simplificada y muchos más podcasts de todo el mundo con la aplicación de radio.net

Descarga la app gratuita: radio.net

  • Añadir radios y podcasts a favoritos
  • Transmisión por Wi-Fi y Bluetooth
  • Carplay & Android Auto compatible
  • Muchas otras funciones de la app
Aplicaciones
Redes sociales
v7.11.0 | © 2007-2025 radio.de GmbH
Generated: 3/14/2025 - 5:59:45 PM