At KubeCon North America 2025, GitLab’s Emilio Salvador outlined how developers are shifting from individual coders to leaders of hybrid human–AI teams. He envisions developers evolving into “cognitive architects,” responsible for breaking down large, complex problems and distributing work across both AI agents and humans. Complementing this is the emerging role of the “AI guardian,” reflecting growing skepticism around AI-generated code. Even as AI produces more code, humans remain accountable for reviewing quality, security, and compliance.Salvador also described GitLab’s “AI paradox”: developers may code faster with AI, but overall productivity stalls because testing, security, and compliance processes haven’t kept pace. To fix this, he argues organizations must apply AI across the entire development lifecycle, not just in coding. GitLab’s Duo Agent Platform aims to support that end-to-end transformation.Looking ahead, Salvador predicts the rise of a proactive “meta agent” that functions like a full team member. Still, he warns that enterprise adoption remains slow and advises organizations to start small, build skills, and scale gradually.Learn more from The New Stack about the evolving role of "cognitive architects":The Engineer in the AI Age: The Orchestrator and ArchitectThe New Role of Enterprise Architecture in the AI EraThe Architect’s Guide to Understanding Agentic AIJoin our community of newsletter subscribers to stay on top of the news and at the top of your game. Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.
--------
22:53
--------
22:53
Why the CNCF's New Executive Director is Obsessed With Inference
Jonathan Bryce, the new CNCF executive director, argues that inference—not model training—will define the next decade of computing. Speaking at KubeCon North America 2025, he emphasized that while the industry obsesses over massive LLM training runs, the real opportunity lies in efficiently serving these models at scale. Cloud-native infrastructure, he says, is uniquely suited to this shift because inference requires real-time deployment, security, scaling, and observability—strengths of the CNCF ecosystem. Bryce believes Kubernetes is already central to modern inference stacks, with projects like Ray, KServe, and emerging GPU-oriented tooling enabling teams to deploy and operationalize models. To bring consistency to this fast-moving space, the CNCF launched a Kubernetes AI Conformance Program, ensuring environments support GPU workloads and Dynamic Resource Allocation. With AI agents poised to multiply inference demand by executing parallel, multi-step tasks, efficiency becomes essential. Bryce predicts that smaller, task-specific models and cloud-native routing optimizations will drive major performance gains. Ultimately, he sees CNCF technologies forming the foundation for what he calls “the biggest workload mankind will ever have.” Learn more from The New Stack about inference: Confronting AI’s Next Big Challenge: Inference Compute Deep Infra Is Building an AI Inference Cloud for Developers Join our community of newsletter subscribers to stay on top of the news and at the top of your game. Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.
--------
25:09
--------
25:09
Kubernetes Gets an AI Conformance Program — and VMware Is Already On Board
The Cloud Native Computing Foundation has introduced the Certified Kubernetes AI Conformance Program to bring consistency to an increasingly fragmented AI ecosystem. Announced at KubeCon + CloudNativeCon North America 2025, the program establishes open, community-driven standards to ensure AI applications run reliably and portably across different Kubernetes platforms. VMware by Broadcom’s vSphere Kubernetes Service (VKS) is among the first platforms to achieve certification.In an interview with The New Stack, Broadcom leaders Dilpreet Bindra and Himanshu Singh explained that the program applies lessons from Kubernetes’ early evolution, aiming to reduce the “muddiness” in AI tooling and improve cross-platform interoperability. They emphasized portability as a core value: organizations should be able to move AI workloads between public and private clouds with minimal friction.VKS integrates tightly with vSphere, using Kubernetes APIs directly to manage infrastructure components declaratively. This approach, along with new add-on management capabilities, reflects Kubernetes’ growing maturity. According to Bindra and Singh, this stability now enables enterprises to trust Kubernetes as a foundation for production-grade AI. Learn more from The New Stack about Broadcom’s latest updates with Kubernetes: Has VMware Finally Caught Up with Kubernetes?VMware VCF 9.0 Finally Unifies Container and VM ManagementJoin our community of newsletter subscribers to stay on top of the news and at the top of your game. Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.
--------
30:40
--------
30:40
How etcd Solved Its Knowledge Drain with Deterministic Testing
The etcd project — a distributed key-value store older than Kubernetes — recently faced significant challenges due to maintainer turnover and the resulting loss of unwritten institutional knowledge. Lead maintainer Marek Siarkowicz explained that as longtime contributors left, crucial expertise about testing procedures and correctness guarantees disappeared. This gap led to a problematic release that introduced critical reliability issues, including potential data inconsistencies after crashes.To rebuild confidence in etcd’s correctness, the new maintainer team introduced “robustness testing,” creating a framework inspired by Jepsen to validate both basic and distributed-system behavior. Their goal was to ensure linearizability, the “Holy Grail” of distributed systems, which required developing custom failure-injection tools and teaching the community how to debug complex scenarios.The team later partnered with Antithesis to apply deterministic simulation testing, enabling fully reproducible execution paths and easier detection of subtle race conditions. This approach helped codify implicit knowledge into explicit properties and assertions. Siarkowicz emphasized that such rigorous testing is essential for safeguarding the sensitive “core” of large open source projects, ensuring correctness even as maintainers change.Learn more from The New Stack about the etcd projectTutorial: Install a Highly Available K3s Cluster at the Edge Join our community of newsletter subscribers to stay on top of the news and at the top of your game. Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.
--------
21:18
--------
21:18
Helm 4: What’s New in the Open Source Kubernetes Package Manager?
Helm — originally a hackathon project called Kate’s Place — turned 10 in 2025, marking the milestone with the release of Helm 4, its first major update in six years. Created by Matt Butcher and colleagues as a playful take on “K8s,” the early project won a small prize but quickly grew into a serious effort when Deus leadership recognized the need for a Kubernetes package manager. Renamed Helm, it rapidly expanded with community contributors and became one of the first CNCF graduating projects.Helm 4 reflects years of accumulated design debt and evolving use cases. After the rapid iterations of Helm 1, 2, and 3, the latest version modernizes logging, improves dependency management, and introduces WebAssembly-based plugins for cross-platform portability—addressing the growing diversity of operating systems and architectures. Beyond headline features, maintainers emphasize that mature projects increasingly deliver “boring” but essential improvements, such as better logging, which simplify workflows and integrate more cleanly with other tools. Helm’s re-architected internals also lay the foundation for new chart and package capabilities in upcoming 4.x releases. Learn more from The New Stack about Helm: The Super Helm Chart: To Deploy or Not To Deploy?Kubernetes Gets a New Resource Orchestrator in the Form of KroJoin our community of newsletter subscribers to stay on top of the news and at the top of your game. Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.
The New Stack Podcast is all about the developers, software engineers and operations people who build at-scale architectures that change the way we develop and deploy software.
For more content from The New Stack, subscribe on YouTube at: https://www.youtube.com/c/TheNewStack