Powered by RND

Continuum Audio

American Academy of Neurology
Continuum Audio
Último episodio

Episodios disponibles

5 de 74
  • June 2025 Disorders of CSF Dynamics Issue With Dr. Jeremy K. Cutsforth-Gregory
    --------  
    19:03
  • BONUS EPISODE: Clinical Applications of Artificial Intelligence in Neurology Practice With Dr. Peter Hadar
    As artificial intelligence (AI) tools become increasingly mainstream, they can potentially transform neurology clinical practice by improving patient care and reducing clinician workload. Critically evaluating these AI tools for clinical practice is important for successful implementation. In this episode, Katie Grouse, MD, FAAN speaks with Peter Hadar, MD, MS, coauthor of the article “Clinical Applications of Artificial Intelligence in Neurology Practice” in the Continuum® April 2025 Neuro-ophthalmology issue. Dr. Grouse is a Continuum® Audio interviewer and a clinical assistant professor at the University of California San Francisco in San Francisco, California. Dr. Hadar is an instructor of neurology at Harvard Medical School and an attending physician at the Massachusetts General Hospital in Boston, Massachusetts. Additional Resources Read the article: Clinical Applications of Artificial Intelligence in Neurology Practice Subscribe to Continuum®: shop.lww.com/Continuum Continuum® Aloud (verbatim audio-book style recordings of articles available only to Continuum® subscribers): continpub.com/Aloud More about the American Academy of Neurology: aan.com Social Media facebook.com/continuumcme @ContinuumAAN Guest: @PeterNHadar Full episode transcript available here Dr Jones: This is Dr Lyell Jones, Editor-in-Chief of Continuum. Thank you for listening to Continuum Audio. Be sure to visit the links in the episode notes for information about subscribing to the journal, listening to verbatim recordings of the articles, and exclusive access to interviews not featured on the podcast. Dr Grouse: This is Dr Katie Grouse. Today I'm interviewing Dr Peter Hadar about his article on clinical applications of artificial intelligence in neurology practice, which he wrote with Dr Lydia Moura. This article appears in the April 2025 Continuum issue on neuro-ophthalmology. Welcome to the podcast, and please introduce yourself to our audience. Dr Hadar: Hi, thanks for having me on, Katie. My name is Dr Peter Hadar. I'm currently an instructor over at Mass General Hospital, Harvard Medical School, and I'm excited to talk more about AI and how it's going to change our world, hopefully for the better. Dr Grouse: We're so excited to have you. The application of AI in clinical practice is such an exciting and rapidly developing topic, and I'm so pleased to have you here to talk about your article, which I found to be absolutely fascinating. To start, I'd like to hear what you hope will be the key takeaway from your article with our listeners. Dr Hadar: Yeah, thank you. The main point of the article is that AI in medicine is a tool. It's a wonderful tool that we should be cautiously optimistic about. But the important thing is for doctors, providers to be advocates on their behalf and on behalf of their patients for the appropriate use of this tool, because there are promises and pitfalls just with any tool. And I think in the article we detail a couple ways that it can be used in diagnostics, in clinical documentation, in the workflow, all ways that can really help providers. But sometimes the devil is in the details. So, we get into that as well. Dr Grouse: How did you become interested in AI and its application, specifically in the practice of neurology? Dr Hadar: When I was a kid, as most neurologists are, I was- I nerded out on a lot of sci-fi books, and I was really into Isaac Asimov and some of his robotics, which kind of talks about the philosophy of AI and how AI will be integrated in the future. As I got into neurology, I started doing research neurology and a lot of folks, if you're familiar with AI and machine learning, statistics can overlap a lot with machine learning. So slowly but surely, I started using statistical methods, machine learning methods, in some of my neurology research and kind of what brought me to where I am today. Dr Grouse: And thinking about and talking about AI, could you briefly summarize a few important terms that we might be talking about, such as artificial intelligence, generative AI, machine learning, etcetera? Dr Hadar: It's a little difficult, because some of these terms are nebulous and some of these terms are used in the lay public differently than other folks would use it. But in general, artificial intelligence is kind of the ability of machines or computers to communicate independently. It’s similar to as humans would do so. And there are kind of different levels of AI. There's this very hard AI where people are worried about with kind of terminator-full ability to replicate a human, effectively. And there are other forms of narrow AI, which are actually more of what we're talking about today, and where it's very kind of specific, task-based applications of machine learning in which even if it's very complex, the AI tools, the machine learning tools are able to give you a result. And just some other terms, I guess out there. You hear a lot about generative AI. There's a lot of these companies and different algorithms that incorporate generative AI, and that usually kind of creates something, kind of from scratch, based on a lot of data. So, it can create pictures, it can create new text if you just ask it. Other terms that can be used are natural language processing, which is a big part of some of the hospital records. When AI tools read hospital records and can summarize something, if it can translate things. So, it turns human speech into these results that you look for. And I guess other terms like large language models are something that also have come into prominence and they rely a lot on natural language processing, being able to understand human speech, interpret it and come up with the results that you want. Dr Grouse: Thank you, that's really helpful. Building on that, what are some of the current clinical applications of AI that we may already be using in our neurologic practice and may not even be aware that that's what that is? Dr Hadar: It depends on which medical record system you use, but a very common one are some of the clinical alerts that people might get, although some of them are pretty basic and they can say, you know, if the sodium is this level, you get an alert. But sometimes they do incorporate fancier machine learning tools to say, here's a red flag. You really should think about contacting the patient about this. And we can talk about it as well. It might encourage burnout with all the different flags. So, it's not a perfect tool. But these sorts of things, typically in the setting of alerts, are the most common use. Sorry, and another one is in folks who do stroke, there are a lot of stroke algorithms with imaging that can help detect where the strokes occur. And that's a heavy machine learning field of image processing, image analysis for rapid detection of stroke. Dr Grouse: That's really interesting. I think my understanding is that AI has been used specifically for radiology interpretation applications for some time now. Is that right? Dr Hadar: In some ways. Actually, my background is in neuroimaging analysis, and we've been doing a lot of it. I've been doing it for years. There's still a lot of room to go, but it's really getting there in some ways. My suspicion is that in the coming years, it’s going to be similar to how anesthesiologists at one point were actively bagging people in the fifties, and then you develop machines that can kind of do it for you. At some point there's going to be a prelim radiology read that is not just done by the resident or fellow, but is done by the machine. And then another radiologist would double check it and make sure. And I think that's going to happen in our lifetime. Dr Grouse: Wow, that's absolutely fascinating. What are some potential applications of AI in neurologic practice that may be most high-yield to improve patient care, patient access, and even reduce physician burnout? Dr Hadar: These are separate sort of questions, but they're all sort of interlinked. I think one of the big aspects of patient care in the last few years, especially with the electronic medical record, is patients have become much more their own advocates and we focus a lot more on patient autonomy. So, they are reaching out to providers outside of appointments. This can kind of lead to physician burnout. You have to answer all these messages through the electronic medical record. And so having, effectively, digital twins of yourself, AI version of yourself, that can answer the questions for the patient on your off times is one of the things that can definitely help with patient care. In terms of access, I think another aspect is having integrated workflows. So, being able to schedule patients efficiently, effectively, where more difficult patients automatically get one-hour appointments, patients who have fewer medical difficulties might get shorter appointments. That's another big improvement. Then finally, in terms of physician burnout, having ambient intelligence where notes can be written on your behalf and you just need to double-check them after allows you to really have a much better relationship with the patients. You can actually talk with them one on one and just focus on kind of the holistic care of the patient. And I think that's- being less of a cog in the machine and focusing on your role as a healer would be actually very helpful with the implementation of some of these AI tools. Dr Grouse: You mentioned ambient technology and specifically ambient documentation. And certainly, this is an area that I feel a lot of excitement about from many physicians, a lot of anticipation to be able to have access to this technology. And you mentioned already some of the potential benefits. What are some of the potential… the big wins, but then also potential drawbacks of ambient documentation? Dr Hadar: Just to kind of summarize, the ambient intelligence idea is using kind of an environmental AI system that, without being very obtrusive, just is able to record, able to detect language and process it, usually into notes. So, effectively like an AI scribe that is not actually in the appointment. So, the clear one is that---and I've seen this as well in my practice---it's very difficult to really engage with the patient and truly listen to what they're saying and form that relationship when you're behind a computer and behind a desk. And having that one-on-one interaction where you just focus on the patient, learn everything, and basically someone else takes notes for you is a very helpful component of it. Some of the drawbacks, though, some of it has to do with the existing technology. It's still not at the stage where it can do everything. It can have errors in writing down the medication, writing down the exact doses. It can't really, at this point, detect some of the apprehensions and some of the nonverbal cues that patients and providers may kind of state. Then there's also the big one where a lot of these are still done by startups and other companies where privacy may be an issue, and a lot of patients may feel very uncomfortable with having ambient intelligence tools introduced into their clinical visit, having a machine basically come between the doctor and the patient. But I think that over time these apprehensions will lessen. A lot of the security will improve and be strengthened, and I think that it's going to be incorporated a lot more into clinical practice. Dr Grouse: Yeah, well, we'll all be really excited to see how that technology develops. It certainly seems like it has a lot of promise. You mentioned in your article a lot about how AI can be used to improve screening for patients for certain types of conditions, and that certainly seems like an obvious win. But as I was reading the article, I couldn't help but worry that, at least in the short term, these tools could translate into more work for busy neurologists and more demand for access, which is, you know, already, you know, big problems in our field. How can tools like these, such as, like, for instance, the AI fundoscopic screening for vascular cognitive risk factors help without adding to these existing burdens? Dr Hadar: It's a very good point. And I think it's one of the central points of why we wanted to write the article is that these AI in medicine, it's, it's a tool like any other. And just like when the electronic medical record came into being, a lot of folks thought that this was going to save a lot of time. And you know, some people would say that it actually worsened things in a way. And when you use these diagnostic screening tools, there is an improvement in efficiency, there is an improvement in patient care. But it's important that doctors, patients advocate for this to be value-based and not revenue-based, necessarily. And it doesn't mean that suddenly the appointments are shorter, that now physicians have to see twice as many patients and then patients just have less of a relationship with their provider. So, it's important to just be able to integrate these tools in an appropriate way in which the provider and the patient both benefit. Dr Grouse: You mentioned earlier about the digital twin. Certainly, in your article you mentioned, you know, that idea along with the idea of the potential of development of virtual chatbot visits or in-person visits with a robot neurologist. And I read all this with equal parts, I think excitement, but horror and and fear. Can you tell us more about what these concepts are, and how far are we from seeing technology like this in our clinics, and maybe even, what are the risks we need to be thinking about with these? Dr Hadar: Yeah. So, I mean, I definitely think that we will see implementation of some of these tools in our lifetime. I'm not sure if we're going to have a full walking, talking robot doing some of the clinical visits. But I do think that, especially as we start doing a lot more virtual visits, it is very easy to imagine that there will be some sort of video AI doctor that can serve as, effectively, a digital twin of me or someone else, that can see patients and diagnose them. The idea behind the digital twin is that it's kind of like an AI version of yourself. So, while you only see one patient, an AI twin can go and see two or three other patients. They could also, if the patients send you messages, can respond to those messages in a way that you would, based on your training and that sort of thing. So, it allows for the ability to be in multiple places at once. One of the risks of this is, I guess, overreliance on the technology, where if you just say, we're just going to have a chatbot do everything for us and then not look at the results, you really run the risk of the chatbot just recommending really bad things. And there is training to be had. Maybe in fifty years the chatbot will be at the same level as a physician, but there's still a lot of room for improvement. I personally, I think that my suspicion as to where things will go are for very simple visits in the future and in our lifetime. If someone is having a cold or something like that and it goes to their primary care physician, a chatbot or something like that may be of really beneficial use. And it'll help segment out the different groups of simple diagnosis, simple treatments can be seen by these robots, these AI, these machine learning tools; and some of the more complex ones, at least for the early implementation of this will be seen by more specialized providers like neurologists and subspecialist neurologists too. Dr Grouse: That certainly seems reasonable, and it does seem that the more simple algorithmic things are always where these technologies will start, but it'll be interesting to see where things can go with more complex areas. Now I wanted to switch gears a little bit in the article- and I thought this was really important because I see it as being certainly one of the bigger drawbacks of AI, is that despite the many benefits of artificial intelligence, AI can unfortunately perpetuate systemic bias. And I'm wondering if you could tell us a little bit more about how this happened? Dr Hadar: I know I'm beating a dead horse on this, but AI is a tool like any other. And the problem with it is that what you put in is very similar to what you get out. And there's this idea in computer science of “garbage in, garbage out”. If you include a lot of data that has a lot of systemic biases already in the data, you're going to get results that perpetuate these things. So, for instance, if in dermatologic practices, if you just had a data set that included people of one skin color or one race and you attempted to train a model that would be able to detect skin cancer lesions, that model may not be easily applicable to people of other races, other ethnicities, other skin colors. And that can be very damaging for care. And it can actually really, really hurt the treatments for a lot of the patients. So that is one of the, kind of, main components of the systemic biases in AI. The way we mitigate them is by being aware of it and actually implementing, I guess, really hard stops on a lot of these tools before they get into practice. Being sure, did your data set include this breakdown of sex and gender, of race and ethnicity? So that the stuff you have in the AI tool is not just a very narrow, focused application, but can be generalized to a large population, not just of one community, one ethnic group, racial group, one country, but can really be generalized throughout the world for many patients. Dr Grouse: The first step is being aware of it, and hopefully these models will be built thoughtfully to help mitigate this as much as possible. I wanted to ask as well, another concern about AI is the safety of private data. And I'm wondering, as we're starting to do things like use ambient documentation, AI scribe, and other types of technologies like this, what can we tell our patients who are concerned about the safety of their personal data collected via these programs, particularly when they're being stored or used with outside companies that aren't even in our own electronic medical records system? Dr Hadar: Yeah, it's a very good question, and I think it's one of the major limitations of the current implementation of AI into clinical practice, because we still don't really have great standards---medical standards, at least---for storing this data, how to analyze this data. And my suspicion is that at some point in the future, we're going to need to have a HIPAA compliance that's going to be updated for the 21st century, that will incorporate the appropriate use of these tools, the appropriate use of these data storage, of data storage beyond just PHI. Because there's a lot more that goes into it. I would say that the important thing for how to implement this, and for patients to be aware of, is being very clear and very open with informed consent. If you're using a company that isn't really transparent about their data security and their data sharing practices, that needs to be clearly stated to the patient. If their data is going to be shared with other people, reanalyzed in a different way, many patients will potentially consider not participating in an AI implementation in clinic. And I think the other key thing is that this should be, at least initially, an opt-in approach as opposed to an opt-out approach. So patients really have- can really decide and have an informed opinion about whether or not they want to participate in the AI implementation in medicine. Dr Grouse: Well, thank you so much for explaining that. And it does certainly sound like there's a lot of development that's going to happen in that space as we are learning more about this and the use of it becomes more prevalent. Now, I also wanted to ask, another good point that you made in your article---and I don't think comes up enough in this area, but likely will as we're using it more---AI has a cost, and some of that cost is just the high amount of data and computational processing needed to use it, as well as the effects on the environment from all this energy usage. Given this drawback of AI, how can we think about potential costs versus the benefits, the more widespread use of this technology? Or how should we be thinking about it? Dr Hadar: It's part of a balance of the costs and benefits, effectively, is that AI---and just to kind of name some of them, when you have these larger data centers that are storing all this data, it requires a lot of energy consumption. It requires actually a lot of water to cool these things because they get really hot. So, these are some of the key environmental factors. And at this point, it's not as extreme as it could be, but you can imagine, as the world transitions towards an AI future, these data centers will become huge, massive, require a lot of energy. And as long as we still use a lot of nonrenewable resources to power our world, our civilization, I think this is going to be very difficult. It's going to allow for more carbon in the atmosphere, potentially more climate change. So, being very clear about using sustainable practices for AI usage, whether it be having data centers specifically use renewable resources, have clear water management guidelines, that sort of thing will allow for AI to grow, but in a sustainable way that doesn't damage our planet. In terms of the financial costs… so, AI is not free. However, on a given computer, if you want to run some basic AI analysis, you can definitely do it on any laptop you have and sometimes even on your phone. But for some of these larger models, kind of the ones that we're talking about in the medical field, it really requires a lot of computational power. And this stuff can be very expensive and can get very expensive very quickly, as anyone who's used any of these web service providers can attest to. So, it's very important to be clear-eyed about problems with implementation because some of these costs can be very prohibitive. You can run thousands and you can quickly rack up a lot of money for some very basic analysis if you want to do it in a very rapid way, in a very effective way. Dr Grouse: That's a great overview. You know, something that I think we're all going to be having to think about a lot more as we're incorporating these technologies. So, important conversations I hope we're all having, and in our institutions as we're making these decisions. I wanted to ask, certainly, as some of our listeners who may be still in the training process are hearing you talk about this and are really excited about AI and implementation of technology in medicine, what would you recommend to people who want to pursue a career in this area as you have done? Dr Hadar: So, I think one of the important things for trainees to understand are, there are different ways that they can incorporate AI into their lives going forward as they become more seasoned doctors. There are clinical ways, there are research ways, there are educational ways. A lot of the research ways, I'm one of the researchers, you can definitely incorporate AI. You can learn online. You can learn through books about how to use machine learning tools to do your analysis, and it can be very helpful. But I think one of the things that is lacking is a clinician who can traverse both the AI and patient care fields and be able to introduce AI in a very effective way that really provides value to the patients and improves the care of patients. So that means if a hospital system that a trainee is eventually part of wants to implement ambient technology, it's important for physicians to understand the risks, the benefits, how they may need to adapt to this. And to really advocate and say, just because we have this ambient technology doesn't mean now we see fifty different patients, and then you're stuck with the same issue of a worse patient-provider relationship. One of the reasons I got into medicine was to have that patient-provider interaction to not only be kind of a cog in the hospital machine, but to really take on a role as a healer and a physician. And one of the benefits of these AI tools is that in putting the machine in medicine, you can also put the humanity back in medicine at times. And I think that's a key component that trainees need to take to heart. Dr Grouse: I really appreciate you going into that, and sounds like there's certainly need. Hoping some of our listeners today will consider careers in pursuing AI and other types of technologies in medicine. I really appreciate you coming to talk with us today. I think this is just such a fascinating topic and an area that everybody's really excited about, and hoping that we'll be seeing more of this in our lives and hopefully improving our clinical practice. Thank you so much for talking to us about your article on AI in clinical neurology. It was a fascinating topic and I learned a lot. Dr Hadar: Thank you very much. I really appreciate the conversation, and I hope that trainees, physicians, and others will gain a lot and really help our patients through this. Dr Grouse: So again, today I've been interviewing Dr Peter Hadar about his article on clinical applications of artificial intelligence in neurology practice, which he wrote with Dr Lydia Moura. This article appears in the most recent issue of Continuum on neuro-ophthalmology. Be sure to check out Continuum Audio episodes from this and other issues. And thank you to our listeners for joining today. Dr Monteith: This is Dr Teshamae Monteith, Associate Editor of Continuum Audio. If you've enjoyed this episode, you'll love the journal, which is full of in-depth and clinically relevant information important for neurology practitioners. Use the link in the episode notes to learn more and subscribe. Thank you for listening to Continuum Audio.
    --------  
    23:45
  • Symptomatic Treatment of Neuro-ophthalmic Visual Disturbances With Dr. Sachin Kedar
    Neuro-ophthalmic deficits significantly impair quality of life by limiting participation in employment, educational, and recreational activities. Low-vision occupational therapy can improve cognition and mental health by helping patients adjust to visual disturbances. In this episode, Katie Grouse, MD, FAAN, speaks with Sachin Kedar, MD, FAAN, author of the article “Symptomatic Treatment of Neuro-ophthalmic Visual Disturbances” in the Continuum® April 2025 Neuro-ophthalmology issue. Dr. Grouse is a Continuum® Audio interviewer and a clinical assistant professor at the University of California San Francisco in San Francisco, California. Dr. Kedar is the Cyrus H Stoner professor of ophthalmology and a professor of neurology at Emory University School of Medicine in Atlanta, Georgia. Additional Resources Read the article: Symptomatic Treatment of Neuro-ophthalmic Visual Disturbances Subscribe to Continuum®: shop.lww.com/Continuum Earn CME (available only to AAN members): continpub.com/AudioCME Continuum® Aloud (verbatim audio-book style recordings of articles available only to Continuum® subscribers): continpub.com/Aloud More about the American Academy of Neurology: aan.com Social Media facebook.com/continuumcme @ContinuumAAN Guest: @AIIMS1992 Full episode transcript available here Dr Jones: This is Dr Lyell Jones, Editor-in-Chief of Continuum. Thank you for listening to Continuum Audio. Be sure to visit the links in the episode notes for information about earning CME, subscribing to the journal, and exclusive access to interviews not featured on the podcast. Dr Grouse: This is Dr Katie Grouse. Today I'm interviewing Dr Sachin Kedar about his article on symptomatic treatment of neuro-ophthalmic visual disturbances, which appears in the April 2025 Continuum issue on neuro-ophthalmology. Welcome to the podcast, and please introduce yourself to our audience. Dr Kedar: Thank you, Katie. This is Sachin Kedar. I'm a neuro-ophthalmologist at Emory University, and I've been doing this for more than fifteen years now. I trained in both neurology and ophthalmology, with a fellowship in neuro-ophthalmology in between. It's a pleasure to be here. Dr Grouse: Well, we are so happy to have you, and I'm just so excited to be discussing this article with you, which I found to be a real treasure trove of useful clinical information on a topic that many find isn't covered enough in their neurologic training. I strongly recommend all of our listeners who work with patients with visual disturbances to check this out. I wanted to start by asking you what you hope will be the main takeaway from this article for our listeners? Dr Kedar: The most important takeaway from this article is, just keep vision on your radar when you are evaluating your patients with neurological disorders. Have a list of a few symptoms, do a basic screening vision, and ask patients about how their vision is impacting the quality of life. Things like activities of daily living, hobbies, whether they can cook, dress, ambulate, drive, read, interact with others. It is very important for us to do so because vision can be impacted by a lot of neurological diseases. Dr Grouse: What in the article do you think would come as the biggest surprise to our listeners? Dr Kedar: The fact that impairment of vision can magnify and amplify neurological deficits in a lot of what we think of as core neurological disorders should come as a surprise to most of the audience. Dr Grouse: On that note, I think it's probably helpful if you could remind us about the types of visual disturbances we should be thinking about and screening for in our patients? Dr Kedar: Patients who have neurological diseases can have a whole host of visual deficits. The simplest ones are deficits of central vision. They can have problems with their visual field. They can have abnormalities of color vision or even contrast sensitivity. A lot of our patients also complain of light sensitivity, eyes feeling tired when they're doing their usual stuff. Some of our patients can have double vision, they can have shaky vision, which leads to their sense of imbalance and maybe a fall risk to them. Dr Grouse: It's really helpful to think about all the different aspects in which vision can be affected, not just sort of the classic loss of vision. Now, your article also serves as a really important reminder, which you alluded to earlier, about how impactful visual disturbances can be on daily activities. Could you elaborate a little further on this, and particularly the various domains that can be affected when there are visual disturbances present? Dr Kedar: So, when I look at how visual disturbances affect quality of life, I look at two broad categories. One is activities of basic daily living. These would be things like, are you able to cook? Are you able to ambulate not just in your home, but in your neighborhood? Are you able to drive to your doctor's appointment or to visit with your family? Are you able to dress yourself appropriately? Are you able to visualize the clothing and choose them appropriately? And then the second category is recreational activities. Are you able to read? Are you able to watch television? Are you able to visit the theatre? Are you able to travel? Are you able to participate in group activities, be it with your family or be it with your social group? It is very important for us to ask our patients if they have problems doing any of this because it really can adversely impact the quality of life. Dr Grouse: I think, certainly with all the things we try to get through talking with our patients, this may not be something that we do spend a lot of time on. So, I think it's it is a good reminder that when we can, being able to ask about these are going to be really important and help us hit on a lot of other things we may not even realize or know to ask about. Now, I was really struck when I was reading your article by the meta-analysis that you had quoted that had showed 47% higher risk of developing dementia among the visually impaired compared to those without visual impairments. Should we be doing more in-depth visual testing on all of our patients with cognitive symptoms? Dr Kedar: This is actually the most interesting part of this article, and kind of hones in on the importance of vision in neurological disorders. Now I want to clarify that patients with visual disorders, it's not a causative influence on dementia, but if you have a patient with an underlying cognitive disorder, any kind of visual disturbance will significantly make it worse. And this has been shown in several studies, both in the neurologic and in the ophthalmological literature. So, I quoted one of the big meta-analysis over there, but studies have clearly shown that if you have these patients and treat them for their visual deficits, their cognitive indices can actually significantly improve. To answer your question, I would say a neurologist should include basic vision screening as part of every single evaluation. Now, I know it's a hard thing in, you know, these days when we are literally running on the hamster wheel, but I can assure you that it won't take you more than 2 to 3 minutes of your time to do this basic screening; in fact, you can have one of your assistants included as part of the vital signs assessment. What are these basic screening tools? Measure the visual acuity for both near and distance. Check and see if their visual field’s off with the confrontation. Look at their eye movements. Are they able to move their eyes in all directions? Are the eyes stable when they're trying to fixate on a particular point? I think if you can do these basic things, you will have achieved quite a bit. Dr Grouse: That's really helpful, and thanks for going through some of the standard, or really, you know, solid basic foundation of visual testing we should be thinking about doing. I wanted to move on to some more details about the visual disturbances. You made an excellent point that there are many types of primary ophthalmologic conditions that can cause visual disturbances that we should keep in mind. So maybe not things that we think about a lot on a day-to-day basis, but, you know, are still there and very common. What are some of the most common ones, and when should we be referring them to see an ophthalmologist? Dr Kedar: So, it depends on the age group of your patient population. Now, the majority of us are adult neurologists, and so the kinds of ophthalmic conditions that we see in this population is going to be different from the pediatric age group. So in the adult population, we might see patients with uncorrected refractive error, presbyopia, patients who have cataracts creep on them, they may have glaucoma, they may have macular degeneration, and these tend to have a slightly higher incidence in the older age group. Now for those of us who are taking care of the younger population, uncorrected refractive errors, strabismus and amblyopia tend to be fairly common causes of visual deprivation in this age group. What I would encourage all of our neurologists is, make sure that your patients get a basic eye examination at least once a year. Just like you want them to go to their primary care and get an annual maintenance visit, everybody should go to the ophthalmologist or the optometrist and get a basic examination. And, if you're resourceful enough, have your patients bring a copy of that assessment. Whether it is normal or there's some abnormality, it is going to help you in the management. Dr Grouse: Absolutely. I think that's a great piece of advice, to think of it almost, like, them seeing their primary care doctor, which of course we offer encourage our patients to do, thinking of this as another very important piece of standard primary care. If a patient comes to you reporting difficulty reading due to possible visual disturbances, I'm curious, can you walk us through how you would approach this evaluation? Dr Kedar: It is not a very common presenting complaint of our patients, even in the neuro-ophthalmology clinic. It's a very rare patient that I see who comes and says, I cannot read or, I have difficulty reading. Most of the patients will come saying, oh, I cannot see. And then you have to dig in to find out, what does that actually mean? What can you not see? Is it a problem in your driving? Is it a problem in your reading? Or is it a problem that occurs at all times? Now you asked me, how do you approach this evaluation? One of the things that all of us, whether we are neurologists, ophthalmologists, or neuro-ophthalmologists, forget to do is to actually have the patient read a paragraph, a sentence, when they are in clinic. And that will give you a lot of ideas about what might actually be going wrong with the patient. Now, as far as how do I approach this evaluation, I will do a basic screening examination to make sure that their visual acuity is good for both distance and near. A lot of us tend to do either distance or near and we will miss the other parameter. You want to do a basic confrontation visual field to make sure that they do not have any subtle deficits that's impacting their ability to read. Examine the eye movements, do a fundoscopic examination. Now, once you've done this basic screening, as a neurologist, you already have some idea of whether your patient has a lesion along the visual pathways. If you suspect that this is a problem with, say, the visual pathways, ask your ophthalmology colleague to do a formal visual field assessment, and that'll pick up subtle deficits of central visual field. And lastly, don't forget higher visual function testing or cortical visual function testing. So basically, you're looking for neglect, phenomenon, or simultanagnosia, all of which tends to have an impact on reading. So, in the manuscript I have a schema of how you can approach a patient with reading difficulties, and in that ischemia you will see categories of where things can go wrong during the process of reading. And if you can approach your patient systematically through one of those domains, there's a fairly good chance that you'll be able to pick up a problem. Dr Grouse: Going a little further on to when you do identify problems with loss of central or peripheral vision, what are some strategies for symptomatic management of these types of visual disturbances? Dr Kedar: As a neurologist, if you pick up a problem with the vision, you have to send this patient to an eye care provider. The vast majority of people who have visual disturbances, it’s from an eye disease. You know, as I alluded to earlier, it can be something as simple as uncorrected refractive error, and that can be fixed easily. A lot of patients in our older age group will have dry eye syndrome, which means they are unable to adequately lubricate the surface of the eye, and as a result, it degrades the quality of their vision. So, they tend to get intermittent episodes of blurred vision, or they tend to get glare. They tend to get various forms of optical aberration. Patients can have cataracts, patients can have glaucoma or macular degeneration. And in all of those instances, the goal is to treat the underlying disease, optimize the vision, and then see what the residual deficit is. By and large, if a patient has a problem with the central vision, then magnification will help them for activities that they perform at near; say, reading. Now for patients with peripheral vision problem, it's a different entity altogether. Again, once you've identified what the underlying cause is, your first goal is to treat it. So, for example, if your patient has glaucoma, which is affecting peripheral vision, you're going to treat glaucoma to make sure that the visual field does not progress. Now a lot of what happens after that is rehabilitation, and that is always geared towards the specific activities that are affected. Is it reading? Is it ambulating? Is it watching television? Is it driving? And then you can advise as a neurologist, you can advise your occupational therapist or low vision specialist and say, hey, my patient is not able to do this particular activity. Can we help them? Dr Grouse: Moving on from that, I wanted to also hit on your approach when patients have disorders of ocular motility. What are some things you can do for symptomatic management of that? Dr Kedar: So, patients with ocular motility can have two separate symptoms. Two, you know, two disabling symptoms, as they would call it. One is double vision and the other is oscillopsia, or the feeling or the visualization of the environment moving in response to your eyes not being able to stay still. Typically, you would see this in nystagmus. Now, let's start with diplopia. Diplopia is a fairly common presenting complaint for neurologists, ophthalmologists, and the neuro-ophthalmologist. The first aspect in the management of diplopia is to differentiate between monocular diplopia and binocular diplopia. Now, monocular diplopia is when the double vision persists even after covering one eye. And that is never a neurological issue. It's almost always an ophthalmic problem, which means the patient will then have to be assessed by an eye care provider to identify what's causing it. And again, refractive error, cataracts, opacities, they can do it. Now, if the patient is able to see single vision by covering one eye at a time, that's binocular diplopia. Now, in patients with binocular diplopia in the very early stages of the disease, the standard treatment regimen is just monocular occlusion. Cover one eye, the diplopia goes away, and then give it time to improve on its own. So, this is what we would typically do in a patient with, say, acute sixth nerve palsy or fourth nerve palsy or third nerve palsy, maybe expect spontaneous improvement in a few months. Now if the double vision does not improve and persists long term, then the neuro-ophthalmologist or the ophthalmologist will monitor the amount of deviation to see if it fluctuates or if it stays the same. So, what are the treatment options that we have in a patient who absolutely refuses any intervention or is not a candidate for any intervention? Monocular occlusion still remains the viable option. Now, patients who have stable ocular deviation can benefit from using prisms in their glasses, or they can be sent to a surgeon to have a strabismus surgery that can realign their eyes. So, again, a broad answer, but there are options available that we can use. Dr Grouse: Thank you for that overview. I think that's just really helpful to keep in mind as we're working with these patients and thinking about what their options are. And then finally, I wanted to touch on patients with higher-order vision processing and attention difficulties. What are some strategies for them? Dr Kedar: These are frankly the most difficult patients that I get to manage in my clinic, simply because there is no effective therapies for managing them. In fact, I think neurologists are far better at this than ophthalmologists or even neuro-ophthalmologists. In patients with attentional disorders, everything boils down to the underlying cause, whether you can treat it or whether it is a slowly progressive, you know, condition, such as from neurodegenerative diseases. And that tailors our goals towards therapy. The primary goal is for safety. A lot of these patients who have visual disturbances from vision processing or attention, they are at accident and fall risk. They have problems with social interactions. And, importantly, there is a gap of understanding of what's going on, not just from their side but also from the family’s side. So, I tend to approach these patients from a safety perspective and social interaction perspective. Now, I have a table listed in the manuscript which will go into details of what the specific things are. But in a nutshell, if your patient has neglect in a specific part of the visual field, they have accident risk on that side. Simple things like walking through a doorway, they can hurt their shoulders or their knees when they bang into the wall on that side because they are unable to judge what's on the other side. Another example would be a patient who has simultanagnosia or a downgaze policy, such as from progressive super nuclear policy. They are unable to look down fast enough, or they are simply unable to look down and appreciate things that are on the floor, and so they can trip and fall. Walking downstairs is also not a huge risk because they are unable to judge distances as they walk down. A lot of what we see in these patients are things that we have to advise occupational therapists and help them improve these safety parameters at home. Another thing that we often forget is patients can inadvertently cause a social incident when they tend to ignore people on their affected side. So, if there is a family gathering, they tend to consistently ignore a group of people who are sitting on the affected side as opposed to the other side. And I've had more than a few patients who've come and said that, I may have offended some of my friends and family. In those instances, it's always helpful when they are in clinic to demonstrate to the family how this can be awkward and how this can be mitigated. So, having everybody sit on one side is a useful strategy. Advise your family and friends before a gathering that, hey, this may happen. And it is not because it is deliberate, but it's because of the medical condition. And that goes a lot, you know, further in helping our patients come out of social isolation because they are also afraid of offending people, you know. And they can also participate socially, and it can overall improve their quality of life. Dr Grouse: That's a really helpful tip, and something I'll keep in mind with my patients with neglect and visual field cuts. Thank you so much for coming to talk with us today. Your article has been so helpful, and I urge everybody listening today to take a look. Dr Kedar: Thank you, Katie. It was wonderful talking to you. Dr Grouse: I've been interviewing Dr Sachin Kedar about his article on symptomatic treatment of neuro-ophthalmic visual disturbances, which appears in the most recent issue of Continuum on neuro-ophthalmology. Be sure to check out Continuum Audio episodes from this and other issues. And thank you to our listeners for joining today. Dr Monteith: This is Dr Teshamae Monteith, Associate Editor of Continuum Audio. If you've enjoyed this episode, you'll love the journal, which is full of in-depth and clinically relevant information important for neurology practitioners. Use the link in the episode notes to learn more and subscribe. AAN members, you can get CME for listening to this interview by completing the evaluation at continpub.com/audioCME. Thank you for listening to Continuum Audio.
    --------  
    22:46
  • Supranuclear Disorders of Eye Movements With Dr. Gregory Van Stavern
    Dysfunction of the supranuclear ocular motor pathways typically causes highly localizable deficits. With sophisticated neuroimaging, it is critical to better understand structure-function relationships and precisely localize pathology within the brain. In this episode, Lyell K. Jones Jr, MD, FAAN, speaks with Gregory P. Van Stavern, MD, author of the article “Supranuclear Disorders of Eye Movements” in the Continuum® April 2025 Neuro-ophthalmology issue. Dr. Jones is the editor-in-chief of Continuum: Lifelong Learning in Neurology® and is a professor of neurology at Mayo Clinic in Rochester, Minnesota. Dr. Van Stavern is the Robert C. Drews professor of ophthalmology and visual sciences at Washington University in St Louis, Missouri. Additional Resources Read the article: Internuclear and Supranuclear Disorders of Eye Movements Subscribe to Continuum®: shop.lww.com/Continuum Earn CME (available only to AAN members): continpub.com/AudioCME Continuum® Aloud (verbatim audio-book style recordings of articles available only to Continuum® subscribers): continpub.com/Aloud More about the American Academy of Neurology: aan.com Social Media facebook.com/continuumcme @ContinuumAAN Host: @LyellJ Full episode transcript available here Dr Jones: This is Dr Lyell Jones, Editor-in-Chief of Continuum. Thank you for listening to Continuum Audio. Be sure to visit the links in the episode notes for information about earning CME, subscribing to the journal, and exclusive access to interviews not featured on the podcast. Dr Jones: This is Dr Lyell Jones, Editor-in-Chief of Continuum: Lifelong Learning in Neurology. Today I'm interviewing Dr Gregory Van Stavern, who recently authored an article on intranuclear and supranuclear disorders of eye movements for our latest Continuum issue on neuro-ophthalmology. Dr Van Stavern is the Robert C Drews professor of ophthalmology and visual sciences at Washington University in Saint Louis. Dr Van Stavern, welcome, and thank you for joining us today. Why don't you introduce yourself to our audience? Dr Van Stavern: Hi, my name is Gregory Van Stavern. I'm a neuro-ophthalmologist located in Saint Louis, and I'm pleased to be on this show today. Dr Jones: We appreciate you being here, and obviously, any discussion of the visual system is worthwhile. The visual system is important. It's how most of us and most of our patients navigate the world. Roughly 40% of the brain---you can correct me if I'm wrong---is in some way assigned to our visual system. But it's not just about the sensory experience, right? The afferent visual processing. We also have motor systems of control that align our vision and allow us to accurately direct our vision to visual targets of interest. The circuitry is complex, which I think is intimidating to many of us. It's much easier to see a diagram of that than to describe it on a podcast. But I think this is a good opportunity for us to talk about the ocular motor exam and how it helps us localize lesions and, and better understand diagnoses for certain disorders. So, let's get right to it, Dr Van Stavern. If you had from your article, which is outstanding, a single most important message for our listeners about recognizing or treating patients with ocular motor disorders, what would that message be? Dr Van Stavern: Well, I think if we can basically zoom out a little to the big picture, I think it really emphasizes the continuing importance of the examination. History as well, but the examination. I was reading an article the other day that was essentially downplaying the importance of the physical examination in the modern era with modern imaging techniques and technology. But for neurology, and especially neuro-ophthalmology, the history and the examination should still drive clinical decision-making. And doing a careful assessment of the ocular motor system should be able to tell you exactly where the lesion is located, because it's very easy to order a brain MRI, but the MRI is, like Forrest Gump might say, it's like a box of chocolates. You never know what you're going to find. You may find a lot of things, but because you've done the history and the examination, you can see if whatever lesion is uncovered by the MRI is the lesion that explains what's going on with the patient. So even today, even with the most modern imaging techniques we have, it is still really important to know what you're looking for. And that's where the oculomotor examination can be very helpful. Dr Jones: I did not have Forrest Gump on my bingo card today, Dr Van Stavern, but that's a really good analogy, right? If you order the MRI, you don't know what you're going to get. And then- and if you don't have a really well-formed question, then sometimes you get misleading information, right?  Dr Van Stavern: Exactly. Dr Jones: We'll get into some technology here in a minute, because I think that's relevant for this discussion. I think most of our listeners are going to agree with us that the exam is important in neuro-ophthalmology, and neurology broadly. So, I think you have some sympathetic listeners there. Again, the point of the exam is to localize and then lead to a diagnosis that we can help patients with. When you think about neurologic disorders where the ocular motor exam helps you get to the right diagnosis, obviously disorders of eye movements, but sometimes it's a clue to a broader neurologic syndrome. And you have some nice discussions in your article about the ocular motor clues to Parkinson disease or to progressive supranuclear palsy. Tell us a little more about that. In your practice, which neurologic disorders do you find the ocular motor exam being most helpful? Dr Van Stavern: Well, just a very brief digression. So, I started off being an ophthalmology resident, and I do two years of ophthalmology and then switch to neurology. And during neurology residency, I was debating which subspecialty to go into, and I realized that neuro-ophthalmology touches every other subspecialty in neurology. And it goes back to the fact that the visual system is so pervasive and widely distributed throughout the brain. So, if you have a neurologic disease, there is a very good chance it is going to affect vision, maybe in a minor way or a major way. That's why careful assessment of the visual system, and particularly the oculomotor system, is really helpful for many neurologic diseases. Neuromuscular disease, obviously, myasthenia gravis and certain myopathies affect the eye movements. Neurodegenerative diseases, in particular Parkinson's disease and parkinsonian conditions, often affect the eye movements. And in particular, when you're trying to differentiate, is this classic Parkinson's disease? Or is this progressive supranuclear palsy? Is it some broad spectrum multisystem atrophy? The differences between the eye movement disorders, even allowing for the fact that there's overlap, can really help point in one direction to the other, and again, prevent unnecessary testing, unnecessary treatment, and so on. Dr Jones: Very good. And I think, to follow on a thread from that concept with patients who have movement disorders, in my practice, seeing older patients who have a little bit of restriction of vertical gaze is not that uncommon. And it's more common in patients who have idiopathic Parkinson disease. And then we use that part of the exam to help us screen patients for other neurodegenerative syndromes like progressive nuclear- supranuclear palsy. So, do you have any tips for our listeners to- how to look at, maybe, vertical gaze and say, this is maybe a normal age-related degree of change. This is something that might suggest idiopathic Parkinson disease. Or maybe something a little more progressive and sinister like progressive super nuclear palsy? Dr Van Stavern: Well, I think part of the issue- and it's harder to do this without the visual aspect. One of my colleagues always likes to say for a neurologist, the eye movement exam begins and ends with the neurology benediction, just doing the sign of the cross and checking the eye movements. And that's a good place to start. But I think it's important to remember that all you're looking at is smooth pursuit and range of eye movements, and there's much more to the oculomotor examination than that. There’s other aspects of eye movement. Looking at saccades can be really helpful; in particular, classically, saccadic movements are selectively abnormal in PSP versus Parkinson's with progressive supranuclear palsy. Saccades, which are essentially rapid movements of the eyes---up and down, in this case---are going to be affected in downward gaze. So, the patient is going to have more difficulty initiating downward saccades, slower saccades, and less range of movement of saccades in downgaze. Whereas in Parkinson's, it's classically upward eye movements and upgaze. So, I think that's something you won't be able to see if you're just doing, looking at, you know, your classic, look at your eye movements, which are just assessing, smooth pursuit. Looking carefully at the eye movements during fixation can be helpful. Another aspect of many parkinsonian conditions is saccadic intrusions, where there's quick movements or saccades of the eye that are interrupting fixation. Much, much more common in PSP than in Parkinson's disease. The saccadic intrusions are what we call square-wave jerks because of what they look like. Eye movement recordings are much larger amplitude in PSP and other multisystem atrophy diseases than with Parkinson's. And none of these are perfect differentiators, but the constellation of those findings, a patient with slow downwards saccades, very large amplitude, and frequent saccadic intrusions might point you more towards this being PSP rather than Parkinson's. Dr Jones: That's a great pearl, thinking about the saccades in addition to the smooth pursuit. So, thank you for that. And you mentioned eye movement measurements. I think it's simultaneously impressive and a little scary that my phone can tell when I'm looking at it within a few degrees of visual attention. So, I imagine there are automated tools to analyze eye movement. Tell us, what's the state of the art there, and what should our listeners be aware of in terms of tools that are available and what they can and can't do? Dr Van Stavern: Well, I could tell you, I mean, I see neuro-ophthalmic patients with eye movement disorders every day and we do not have any automated tools for eye movement. We have a ton of imaging techniques for imaging the optic nerve and the retina in different ways, but we don't routinely employ eye movement recording devices. The only time we usually do that is in somebody where we suspect they have a central or peripheral vestibular disease and we send them for vestibular testing, for eye movement recordings. There is interest in using- I know, again, sort of another digression, but if you're looking at the HINTS technique, which is described in the chapter to differentiate central from peripheral disease, which is a very easy, useful way to differentiate central from peripheral or peripheral vestibular disease. And again, in the acute setting, is this a stroke or not a stroke? Is it the brain or is it the inner ear? Part of the problem is that if you're deploying this widespread, the people who are doing it may not be sufficiently good enough at doing the test to differentiate, is a positive or negative test? And that's where some people have started introducing this into the emergency room, these eye movement recording devices, to give the- using, potentially, AI and algorithms to help the emergency room physicians say, all right, this looks like a stroke, we need to admit the patient, get an MRI and so on, versus, this is vestibular neuritis or an inner ear problem, treat them symptomatically, follow up as an outpatient. That has not yet been widely employed. It's a similar way that a lot of institutions are having fundus photography and OCT devices placed in the emergency room to aid the emergency room physician for patients who present with acute vision issues. So, I think that could be the future. It probably would be something that would be AI-assisted or AI-driven. But I can tell you at least at our institution and most of the ones I know of, it is not routinely employed yet. Dr Jones: So maybe on the horizon, AI kind of facilitated tools for eye movement disorder interpretation, but it's not ready for prime time yet. Is that a fair summary? Dr Van Stavern: In my opinion, yes. Dr Jones: Good to know. This has struck me every time I've read about ocular motor anatomy and ocular motor disorders, whether they're supranuclear or intranuclear disorders. The anatomy is complex, the circuitry is very complicated. Which means I learn it and then I forget it and then I relearn it. But some of the anatomy isn't even fully understood yet. This is a very complex real estate in the brainstem. Why do you think the neurophysiology and neuroanatomy is not fully clarified yet? And is there anything on the horizon that might clarify some of this anatomy? Dr Van Stavern: The very first time I encountered this topic as an ophthalmology resident and later as a neurology resident, I just couldn't understand how anyone could really understand all of the circuitry involved. And there is a lot of circuitry that is involved in us simply having clear, single binocular vision with the afferent and efferent system working in concert. Even in arch. In my chapter, when you look at the anatomy and physiology of the smooth pursuit system or the vertical gaze pathways, there's a lot of, I'll admit it, there's a lot of hand waving and we don't completely understand it. I think a lot of it has to do with, in the old days, a lot of the anatomy was based on lesions, you know, lesion this area either experimentally or clinically. And that's how you would determine, this is what this region of the brain is responsible for. Although we've gotten more sophisticated with better imaging, with functional connectivity MRI and so on, all of those have limitations. And that's why I still don't think we completely understand all the way this information is integrated and synthesized, and, to get even more big level and esoteric, how this makes its way into our conscious mind. And that has to do with self-awareness and consciousness, which is a whole other kettle of fish. It's just really complicated. I think when I'm at least talking to other neurologists and residents, I try to keep it as simple as possible from a clinical standpoint. If you see someone with an eye movement problem, try to see if you can localize it to which level you're dealing with. Is it a muscle problem? Is it neuromuscular junction? Is it nerve? Is it nucleus? Is it supranuclear? If you can put it at even one of those two levels, you have eliminated huge territories of neurologic real estate, and that will definitely help you target and tailor your workup. So, again, you're not costing the patient in the healthcare system hundreds of thousands of dollars. Dr Jones: Great points in there. And I think, you know, if we can't get it down to the rostral interstitial nucleus of the medial longitudinal fasciculus, if we can get it to the brainstem, I think that's obviously- that's helpful in its own right. And I imagine, Dr Van Stavern, managing patients with persistent ocular motor disorders is a challenge. We take foveation for granted, right, when we can create these single cortical images. And I imagine it's important for daily function and difficult for patients who lose that ability to maintain their ocular alignment. What are some of the clinical tools that you use in your practice that our listeners should be aware of to help patients that have a persistent supranuclear disorder of ocular movement? Dr Van Stavern: Well, I think you tailor your treatment to the symptoms, and if it's directly due to underlying condition, obviously you treat the underlying condition. If they have sixth nerve palsy because of a skull base tumor, obviously you treat the skull base tumor. But from a practical standpoint, I think it depends on what the symptom is, what's causing it, and how much it's affecting their quality of life. And everyone is really different. Some patients have higher levels of tolerance for blurred vision and double vision. For things- for patients who have double vision, depending upon the underlying cause we can sometimes use prisms and glasses. Prisms are simply- a lot of people just think prism is this, like, mystical word that means a lot. It’s simply just an optical device that bends light. So, it essentially bends light to allow the eyes- basically, the image to fall on the fovea in both eyes. And whether the prisms help or not is partly dependent upon how large the misalignment is. If somebody has a large degree of misalignment, you're not going to fix that with prism. The amount of prism you'd need to bend the light enough to land on the fovea in both eyes would cause so much blur and distortion that it would essentially be a glorified patch. So, for small ranges of misalignment, prisms are often very helpful, that we can paste over glasses or grind into glasses. For larger degrees of misalignment that- let's say it is due to some skull base tumor or brain stem lesion that is not going to get better, then eye muscle surgery is a very effective option. We usually like to give people a long enough period of time to make sure there's no change before proceeding with eye muscle surgery. Dr Jones: Very helpful. So, prisms will help to a limited extent with misalignment, and then surgery is always an option if it's persistent. That's a good pearl for, I think, our listeners to take away. Dr Van Stavern: And even in those circumstances, even prisms and eye muscle surgery, the goal is primarily to cause single binocular vision and primary gaze at near. Even in those cases, even with the best results, patients are still going to have double vision, eccentric gaze. For most people, that's not a big issue, but we have had a few patients… I had a couple of patients who were truck drivers who were really bothered by the fact that when they look to the left, let's say because it's a 4th nerve palsy on the right, they have double vision. I had a patient who was a golfer who was really, really unhappy with that. Most people are okay with that, but it all depends upon the individual patient and what they use their vision for. Dr Jones: That's a great point. There's not enough neurologists in the world. I know for a fact there are not enough neuro-ophthalmologists in the world, right? There's just not many people that have that dual expertise. You mentioned that you started with ophthalmology and then did neurology training. What do you think the pipeline looks like for neuro-ophthalmology? Do you see growing interest in this among trainees, or unchanged? What are your thoughts about that? Dr Van Stavern: No, that's a continuing discussion we're having within our own field about how to attract more residents into neuro-ophthalmology. And there's been a huge shift. In the past, this was primarily ophthalmology-driven. Most neuro-ophthalmologists were trained in ophthalmology initially before doing a fellowship. The last twenty years, it switched. Now there's an almost 50/50 division between neurologists and ophthalmologists, as more neurologists have become more interested. This is probably a topic more for the ophthalmology equivalent of Continuum. One of the perceptions is this is not a surgical subspecialty, so a lot of ophthalmology residents are disincentivized to pursue it. So, we have tried to change that. You can do neuro-ophthalmology and do eye muscle surgery or general ophthalmology. I think it really depends upon whether you have exposure to a neuro-ophthalmologist during your neurology residency. If you do not have any exposure to neuro-ophthalmology, this field will always seem mysterious, a huge black box, something intimidating, and something that is not appealing to a neurologist. I and most of my colleagues make sure to include neurology residents in our clinic so they at least have exposure to it. Dr Jones: That's a great point. If you never see it, it's hard to envision yourself in that practice. So, a little bit of a self-fulfilling prophecy. If you don't have neuro-ophthalmologists, it's hard to expose that practice to trainees. Dr Van Stavern: And we're also trying; I mean, we make sure to include medical students, bring them to our meetings, present research to try to get them interested in this field at a very early stage. Dr Jones: Dr Van Stavern, great discussion, very helpful. I want to thank you for joining us today. I want to thank you for not just a great podcast, but also just a wonderful article on ocular motor disorders, supranuclear and intranuclear. I learned a lot, and hopefully our listeners did too. Dr Van Stavern: Well, thanks. I really appreciate doing this. And I love Continuum. I learn something new every time I get another issue. Dr Jones: Well, thanks for reading it. And I'll tell you as the editor of Continuum, I learn a lot reading these articles. So, it's really a joy to get to read, up to the minute, cutting-edge clinical content for neurology. Again, we've been speaking with Dr Gregory Van Stavern, author of a fantastic article on intranuclear and supranuclear disorders of eye movements in Continuum's most recent issue on neuro-ophthalmology. Please check it out, and thank you to our listeners for joining today. Dr Monteith: This is Dr Teshamae Monteith, Associate Editor of Continuum Audio. If you've enjoyed this episode, you'll love the journal, which is full of in-depth and clinically relevant information important for neurology practitioners. Use the link in the episode notes to learn more and subscribe. AAN members, you can get CME for listening to this interview by completing the evaluation at continpub.com/audioCME. Thank you for listening to Continuum Audio.
    --------  
    20:05
  • Approach to Diplopia With Dr. Devin Mackay
    Double vision is a symptom often experienced by patients with neurologic disease. An organized systematic approach to evaluating patients with diplopia needs a foundational understanding of the neuroanatomy and examination of eye movements and ocular alignment. In this episode, Teshamae Monteith, MD, FAAN, speaks with Devin Mackay, MD, FAAN, author of the article “Approach to Diplopia” in the Continuum® April 2025 Neuro-ophthalmology issue. Dr. Monteith is the associate editor of Continuum® Audio and an associate professor of clinical neurology at the University of Miami Miller School of Medicine in Miami, Florida. Dr. Mackay is an associate professor of neurology, ophthalmology, and clinical neurosurgery at Indiana University School of Medicine in Indianapolis, Indiana. Additional Resources Read the article: Approach to Diplopia Subscribe to Continuum®: shop.lww.com/Continuum Earn CME (available only to AAN members): continpub.com/AudioCME Continuum® Aloud (verbatim audio-book style recordings of articles available only to Continuum® subscribers): continpub.com/Aloud More about the American Academy of Neurology: aan.com Social Media facebook.com/continuumcme @ContinuumAAN Host: @headacheMD Full episode transcript available here Dr Jones: This is Dr Lyell Jones, Editor-in-Chief of Continuum. Thank you for listening to Continuum Audio. Be sure to visit the links in the episode notes for information about earning CME, subscribing to the journal, and exclusive access to interviews not featured on the podcast. Dr Monteith: This is Dr Teshamae Monteith. Today I'm interviewing Dr Devin Mackay about his article on approach to diplopia, which appears in the April 2025 Continuum issue on neuro-ophthalmology. Welcome to the podcast. How are you? Dr Mackay: Thank you. It's great to be here. Dr Monteith: Congratulations on your article. Dr Mackay: Thank you. I appreciate that. Dr Monteith: Why don't you start off with introducing yourself to our audience? Dr Mackay: So, yeah, my name is Devin Mackay. I'm a neuro-ophthalmologist at Indiana University. I did my residency at what was used to be known as the Partners Healthcare Program in Boston, and I did a fellowship in neuro-ophthalmology in Atlanta. And I've been in practice now for about ten years. Dr Monteith: Oh, wow. Okay. Tell us a little bit about your goals when you were writing the chapter. Dr Mackay: So, my goal with the approach to double vision was really to demystify double vision. I think double vision is something that as trainees, and even as faculty members and practicing neurologists, we really get intimidated by, I think. And it really helps to have a way to approach it that demystifies it and allows us to localize, just like we do with so many other problems in neurology. Dr Monteith: I love that, demystification. So why don't you tell us what got you interested in neuro-ophthalmology? Dr Mackay: Yeah, so neuro-ophthalmology I stumbled on during a rotation during residency. We rotated in different subspecialties of neurology and I did neuro-ophthalmology, and I was just amazed by the exam and how intricate it was, the value of neuroanatomy and localization, the ability to take a complicated problem and kind of approach it as a diagnostic specialist and really unravel the layers of it to make it better. To, you know, figure out what the problem is and make it better. Dr Monteith: Okay, so you had a calling, clearly. Dr Mackay: I sure did. Dr Monteith: You talked about latest developments in neuro-ophthalmology as it relates to diplopia. Why don't you share that with our listeners? Dr Mackay: Yeah. So, you know, double vision is something that's really been around since the beginning of time, essentially. So that part hasn't really changed a lot, but there are some changes that have happened in how we approach double vision. Probably one of the bigger ones has been, we used to teach that with a, you know, patient over the age of fifty with vascular risk factors who had a cranial nerve palsy of cranial nerves 3, 4, or 6, we used to automatically assume that was a microvascular palsy and we just wouldn't do any more testing and we'd just, you know, wait to see how they did. And it turns out we're missing some patients who have significant pathologies, sometimes, with that approach. And so, we've really shifted our teaching with that to emphasize that it's a lot easier to get an MRI, for example, than it ever has been. And it can be important to make sure we're not missing important pathology in patients, even if they have vascular risk factors over the age of fifty and they just have a cranial nerve 3, 4, or 6 palsy. So that's been one change. Dr Monteith: Interesting. And why don't you tell us a little bit about the essential points that you want to get across in the article? Dr Mackay: Yeah. So, I think one is to have a systematic approach to double vision. And a lot of that really revolves around localization. And it even begins with the history that we take from the patients. There's lots of interesting things we can ask about double vision from the patient. For example, the most important thing you can ever ask someone with double vision is, does it go away when you cover either eye? And that really helps us figure out the first question for us as neurologists, which is, is it neurologic or non-neurologic? If it's still there when covering one eye, then it is not neurologic and that's usually a problem for an ophthalmologist to sort out. So that's really number one. And then if it is binocular double vision, then we get into details about, is it horizontal or vertical misalignment? Is it- what makes it better and worse? Is there an associated ptosis or other symptoms? And based on all of that, we can really localize the abnormality with the double vision and get into details about further testing if needed, and so forth. I also love that that approach really reduces our need to rely on things like neuroimaging sometimes when we may not need it, or on other tests. So, I think it really helps us be more efficient and really take better care of patients. Dr Monteith: So definitely that cover/uncover test, top thing there. Your approach- and you mentioned, are you really getting that history, and are there any other kind of key factors when you're approaching diplopia before getting into some of the details? Dr Mackay: Yeah, that's a good question. I think also having some basics of how to examine the patient, because double vision is such a challenging thing. A lot of us aren't as familiar with the exam toolkit, so to speak, of what you would do with a patient with double vision. And so, I go over in the article a bit about a Maddox rod, which is a handy little tool that I always keep in my pocket of my lab coat. It allows you to assign a red line to one eye and a light to the other eye, and you can see if the eyes line up or not. And you don't need any other special equipment, you just need the light in that Maddox rod. That really helps us understand a lot about the pattern of misalignment, which is really important for evaluating double vision. So, for example, if someone has a right 6th nerve palsy, I'll expect a horizontal misalignment of the eyes that worsens when the patient looks to the right and improves when they look to the left. And especially if it's a partial palsy, it's not always easy to see that just by looking at their eye movements. And having a way to really measure the eye alignment and figure out, is it worse or better in certain directions, is really essential to localization, I think, in a lot of cases. Dr Monteith: You caught me. I skipped over that Maddox rod part, even though you spent a lot of time talking about Maddox rods. Kind of skipped over it. So, you're saying that I need one. Dr Mackay: Everyone needs one. I've converted some of our residents here to carry one with them. And yeah, I realize it's a daunting tool at first, but when you have a patient with double vision and their eye movements look normal, I feel like a lot of neurologists are- kind of, their hands seem like they're tied and they’re like, oh, I don't know, I don't know what to do at this point. And if you can get some more details with a simple object like that, it can really change things. Dr Monteith: So, we’ve got to talk to the AAN store and make sure that they have enough of these, because now there's going to be lots of… Dr Mackay: We're going to sell out on Amazon today now because of this podcast. Dr Monteith: Cyber Monday. So, let's talk about the H pattern. And I didn't know it had the- well, yeah, I guess the official name is “H pattern.” In medical school, I mean, that's what I learned. But as a resident and, you know, certainly as an attendee, I see people doing all sorts of things. You're pro-H pattern, but are there other patterns that you also respect? Dr Mackay: It depends on what you're looking for, I think. The reason I like the H pattern is because you get to look at upgaze and downgaze in two different directions. So, you get to look at upgaze and downgaze when looking to the left, and up- and downgaze when looking to the right. And the reason that matters is because vertical movements of the eyes are actually controlled by different eye muscles depending on whether the eye is adducted toward the nose or abducted away from the nose. And so that's why I love the H pattern, is because it allows you to see that. If you just have them look up and down with just a cross pattern, for example, then you really lose that specificity of looking at both the adduction and abduction aspects. So, it's not wrong to do it another way with, like, the cross, for example, but I just think there are some cases where we'll be missing some information, and sometimes that can actually make a difference. Dr Monteith: Well, there you have it. Let's talk a little bit about eliciting diplopia during the neurologic exam. What other things should we be looking out for? Dr Mackay: So, in terms of eliciting diplopia, it really starts with the exam and again, figuring out, are we covering one eye? And figuring out, is this patient still having double vision? It's tricky because sometimes the patients won't even know the answer to that question or they've never done it, they’ve never covered one eye. And so, if that's the case, I really make them do it in the office with me and it's like, okay, well, are we having double vision right now? Well, great, okay, we are, then we're going to figure this out right now. And we cover one eye and say, is it still double? And that way we can really figure out, are we monocular or binocular? That's always step one. And then if we've established that it's binocular diplopia, then that's when we get into the other details that I mentioned before. And then as far as other things to look for, we're always in tune to other things that are going on in terms of symptoms, like ptosis, or if there's bulbar weakness, or some sensory change or motor problem that seems to be associated with it. Obviously, those will give us clues in the localization as well. Dr Monteith: And what about ocular malalignment? Dr Mackay: Yeah. So ocular malalignment, really, the cardinal symptom of that is going to be double vision. And so, if a patient has a misalignment of the eyes and they don't have double vision, then usually that means either we're wrong and they don't have double vision, or they do have double vision and they, you know, haven't said it correctly. Or it could be that the vision is poor in one eye. Sometimes that can happen. Or, some patients were actually born with an eye misalignment and their brain has learned in a way to kind of tune out or not allow the proper development of vision in one eye. And so that's also known as amblyopia, also known as the lazy eye, some people call it. But that finding can also make someone not experience double vision. But otherwise, if someone's had normal vision kind of throughout their life, they'll usually be pretty aware of when they first notice double vision. It'll be an obvious event for them in in most cases. Dr Monteith: And then the Cogan lid twitch? Dr Mackay: Oh yes, the Cogan lid twitch. So, the Cogan lid twitch is a feature of myasthenia gravis. The way you elicit it is, you have the patient look down. I'm not sure there's a standardization for how long; you want to have it long enough that you're resting the levator muscle, which is the muscle that pulls the upper lid open. And so, you rest that by having them look down for… I usually do about ten or fifteen seconds. And then I have them look up to looking straight forward. And you want to pay careful attention to their lid position as their eye settles in that straight-forward position. What will happen with a Cogan's lid twitch is, the lid will overshoot, and then it'll come back down and settle into its, kind of, proper position. And what we think is happening there is, it's almost like a little mini “rest test” in a way, where you're resting that muscle just long enough to allow some of the neurotransmission to recover. You get a normal contraction of the muscle, but it fades very quickly and comes back down. And that's experienced as a twitch. Dr Monteith: So, the patient can feel it. And it's something you can see? Dr Mackay: Yeah, the patient may not feel it as much. It's usually it's going to be something that the clinician can see if they're looking for it. And I would say that's one of the physical exam findings that can be a hallmark of myasthenia gravis, but certainly not the only one. Some others that we often look for are fatigable ptosis with sustained upgaze. You have the patient look up for a prolonged time and you'll see the lid droop down. So that can be one. Ice pack test is very popular nowadays, and it has pretty good sensitivity and specificity for myasthenia. So, you keep an ice pack over the closed eyes for two minutes and you compare the lid position before and after the ice pack test. And in the vast majority of myasthenia patients, if they have ptosis, the ptosis will have resolved, or at least significantly improved, in those patients. And yet one more sign is, if you find the patient's eye with ptosis and you lift open the eye manually, you'll often see that the other eyelid and the other eye will lower down. So, I'm not sure there's a name for that, but that can be a helpful sign as well. Dr Monteith: Since you're going through some of these, kind of, key features of different neurologic disease, why don't you tell us about a few others? Dr Mackay: Yeah, so another I mentioned in the in the article is measurement of levator function, which is really a test of eyelid strength. And so, that can be helpful if we have- someone has ptosis, or we're not sure if they have ptosis and we're trying to evaluate that to see if it's linked to the double vision, because that really changes the differential if ptosis is part of the clinical situation. So, the way that's measured is you have a patient look down as far as they can. And you get out a little ruler---I usually use a millimeter ruler---and I set the zero of the ruler at the upper lid margin when they're looking down. So, I hold the ruler there, and then I ask the patient to look up as far as they can without moving their head. Where the lid position stops of the upper lid is the new point on the ruler. And so, you measure that and see how much that is. And so, a normal patient may have a value somewhere between, I don't know, twelve or thirteen millimeters up to seventeen or eighteen millimeters, probably, in most cases. Especially if there is an asymmetric lid position, if you find that the levator function is symmetric, then it tells you that the muscle is working fine and that the ptosis is not from the muscle. So then the ptosis may be from dehiscence of the lid margin from the muscle. And so, that's a really common cause of ptosis, and that's often age-related or trauma-related. And we can dismiss that as being part of the symptom constellation of double vision. So, it can be really helpful to clarify, is this a muscle problem, which you'd expect with myasthenia or a third nerve palsy, or is this a mechanical problem with the lid, which is non-neurologic and really should be dismissed? So that can be a really helpful exam tool. Dr Monteith: So, you're just now getting into a little localization. So why don't we kind of start from the most proximal pistol with localization. Give us a little bit of tips. I know they just got to read your article, but give us a few tips. Dr Mackay: So, in terms of most proximal causes, there are supranuclear causes of ocular misalignment. For example, a skew deviation would qualify as that. Anything that's happening from some deficient input before you get to the cranial nerve nuclei, that we would consider supranuclear. So, we also see that with things like progressive supranuclear policy and certain other conditions. And then there can be lesions of the cranial nerve nuclei themselves. So, cranial nerves 3, 4, and 6 all have nuclei, and if they're lesioned they will cause double vision in specific patterns. And then there's also another subgroup, which is known as intranuclear problems with eye alignment. And so, the most common of that is going to be intranuclear ophthalmoplegia. And so that's very common in patients with demyelinating disorders, or it can also happen with strokes and tumors and other causes. And then there's infranuclear problems, which are from the cranial nerve nuclei out, and so those would be the cranial nerves themselves. So that's where your microvascular palsies, any tumor pressing on the nerve in those locations can cause palsies like that, any inflammatory disorder along that course. Then as we get more distal, we get into the orbit, we have the neuromuscular junction---so, the connection between the nerve and the muscle. And of course, that's our myasthenia gravis. And there are rare causes, things like botulinum and tick borne illnesses and certain other things that are more rare. And then, of course, we get to the muscle itself, and there can be different muscular dystrophies, different things like myositis or inflammatory disorders of the orbit or even physical trauma. So, if a patient, you know, had a trauma in trapping an extraocular muscle, that can be a localization. So really, anywhere along that pathway you can have double vision. So, I love to approach it from that perspective to help narrow down the diagnostic possibilities. Dr Monteith: Okay, just like everything? Dr Mackay: Just like all of the rest of the neurology. See, it's not that scary. Dr Monteith: You know, and so, yeah. And then you do a lot more than, you know, a few cranial nerves, right? Dr Mackay: Right. That's right. There's a lot more to double vision than that. I think as neurologists, we get lost if it's not a cranial nerve palsy, we're like, oh, I don't know what this is. And if it's not myasthenia, not a cranial nerve palsy. But it's worth also considering that there are ophthalmologic causes of someone having double vision that we often don't consider. So maybe someone who was born with strabismus, or maybe they have a little bit of a tendency toward an eye misalignment that their brain compensates, for and then it decompensates someday and that now they have a little bit of double vision intermittently, so that those can be causes to consider as well. Dr Monteith: Yeah, well, we'll just have to, you know, request those records from forty years ago. No problem. Dr Mackay: That's right. Dr Monteith: Why don't you also give us a little bit of tip when we're on the wards and we want to teach either a medical student or a resident, or if it's a resident listening, may want to teach a junior resident and seem like a star when approaching a patient with diplopia. Give us some teaching pearls. Dr Mackay: Yeah. So, I would love people teaching more about this at the bedside. I'd say probably the first thing to do would be to equip yourself by recognizing what some of the pertinent questions are to ask someone with double vision. Those things would include, is the double vision worse when looking in a certain direction? Does the double vision go away or not when you cover one eye? What happens when you tilt your head one direction or the other? Is it intermittent or constant? What makes it better? What makes it worse? Those kinds of things can really help us narrow down the possibilities. And then the other thing would be to equip yourself with some tools for examining. And it doesn't have to be physical tools. These can actually be things like, you mentioned the cross-cover test or cover/uncover test. That's described in the article. And I think knowing how to do that properly, knowing how to examine the eye movements properly and how to check for subtle things like a subtle intranuclear ophthalmoplegia, which is also mentioned in the article, being familiar with those things can be a really useful exercise in allowing you to teach others later on. Dr Monteith: Cool. Why don't you tell us about some of the things you're most excited about in the field? Dr Mackay: One of the things about our subspecialty for so long is we really haven't had big data with, you know, big trials and all these things that all the stroke people have. And that's starting to change slowly. There's been, for example, the idiopathic intracranial hypertension treatment trial that was published back in, I think it was 2014. You know, of course we had the optic neuritis treatment trial, back a few decades ago now. Some of the exciting ones coming up, there's going to be a randomized controlled trial looking at different treatments for idiopathic intracranial hypertension that are surgically based. So, for example, comparing venous sinus stenting with optic nerve sheath fenestration. And so, figuring out, is there a best practice for surgical intervention for patients with IIH? So, we're starting to have more trials like that now than I think we've had in the past. And so, it's exciting to get to have an evidence base for some of the things that we recommend and do. Dr Monteith: And what about some of the treatment for diplopia? Like prisms, and where are we with some of that? Dr Mackay: Yeah, great. So, it's a pretty simple concept, but still kind of difficult in practice. I kind of say there are four different ways to treat double vision: you can ignore it, you can patch or cover one eye, you can treat with prisms, and you can treat with eye muscle surgery. And so, those are the main ways other than, of course, treating the underlying disorder if there's a disorder causing double vision. So those are the main ways to treat. In terms of knowing if someone's going to be a candidate for prism therapy, we also have to remember that prisms are really going to be most helpful for when someone's looking straight forward. So, we need to make sure that their double vision is happening when they look straight forward. So, for example, if they're only having double vision looking to the left or to the right, that patient may not benefit from prisms as much as someone who is having double vision when they look straight forward. So that's one thing I look for. And then strabismus surgery is something to be considered if someone is not tolerating prisms and they're not helping and their eye alignment is stable. So, if you think about it, if someone's eye alignment is changing a lot, you're probably not going to want to do surgery for that patient because it's going to keep changing after surgery. And so, if someone's eye alignment is stable for six months or more and they're not getting the benefit they'd like from prisms, then maybe referral to a strabismus surgeon might be something to consider. Dr Monteith: Great. And then, I guess another question is just popping up in my head selfishly. What are your thoughts about patients that get referrals for exercises? Say they have, like, a convergence efficiency or something causing diplopia, maybe after a concussion. Maybe there's not a lot of evidence, but what is your take on exercising? Dr Mackay: Yeah, excellent question. So, there actually is evidence for exercises for convergence insufficiency. So, we know that those do work. Now where exercises are probably not as helpful, or at least not- there isn't an evidence base for them, is really with just about every other kind of eye misalignment in adults. We hear a lot about eye movement therapies for concussion and barely any other acquired misalignment of the eyes as well. And really, the evidence really hasn't shown us that that's helpful; again, with the exception being convergence insufficiency. So, we know that an office-based vision therapy type program for convergence insufficiency does work, but of course it's kind of inconvenient. It can cost money that may or may not be covered by insurance. And so, there are difficulties even with doing that. And so, I often recommend that patients with convergence insufficiency at least try something called pencil push-ups, where they take a pencil at arm's length and they bring it in and exercise that convergence ability. You know, that's a cheap, easy way to try to treat that initially. So yeah, there can be some limited utility for eye muscle exercises in certain conditions. Dr Monteith: My one example. I was- it was fuzzy, but in a different way. So, what do you do for fun? I mean, it sounds like you like to see a lot of eyeballs? Dr Mackay: I do. I like to see a lot of eyeballs. Dr Monteith: When you're not doing these things, what do you do for fun? Dr Mackay: So, people ask me what my hobbies are, and I laugh because my hobby is actually raising children. Dr Monteith: Oh, okay! Dr Mackay: So, my wife and I have eight kids- Dr Monteith: Oh, wow! Dr Mackay: Ages three to thirteen. So, kind of doesn't allow me to have other things right now. I'm sure I'll have more hobbies later on, but no, I really love my kids. And I- they give me plenty to do. There's no shortage of- in fact, they were really, they were really excited about this podcast today. They're so excited that Dad gets to be on a podcast, and so I'm going to have to show this to them later. They're going to be thrilled about it. Dr Monteith: Excellent. Well, thank you so much for being on the podcast. Dr Mackay: Thank you. It's been my pleasure. Dr Monteith: Again, today I've been interviewing Dr Devin Mackay about his article on approach to diplopia, which appears in the most recent issue of Continuum on neuro-ophthalmology. Be sure to check out Continuum Audio episodes from this and other issues. And thank you to our listeners for joining today. Dr Monteith: This is Dr Teshamae Monteith, Associate Editor of Continuum Audio. If you've enjoyed this episode, you'll love the journal, which is full of in-depth and clinically relevant information important for neurology practitioners. Use the link in the episode notes to learn more and subscribe. AAN members, you can get CME for listening to this interview by completing the evaluation at continpub.com/audioCME. Thank you for listening to Continuum Audio.
    --------  
    23:20

Más podcasts de Salud y forma física

Acerca de Continuum Audio

Continuum Audio features conversations with the guest editors and authors of Continuum: Lifelong Learning in Neurology, the premier topic-based neurology clinical review and CME journal from the American Academy of Neurology. AAN members can earn CME for listening to interviews for review articles and completing the evaluation on the AAN’s Online Learning Center.
Sitio web del podcast

Escucha Continuum Audio, La cuarta es la vencida y muchos más podcasts de todo el mundo con la aplicación de radio.net

Descarga la app gratuita: radio.net

  • Añadir radios y podcasts a favoritos
  • Transmisión por Wi-Fi y Bluetooth
  • Carplay & Android Auto compatible
  • Muchas otras funciones de la app

Continuum Audio: Podcasts del grupo

Aplicaciones
Redes sociales
v7.18.3 | © 2007-2025 radio.de GmbH
Generated: 5/28/2025 - 6:55:38 PM